Chapter 4

Arrays, String, and Pointers

Arrays

O To reference several data elements of a
particular type with a single variable name.

o Individual items in an array are specified
by an index value.

= The first having the index number 0.
= The last having the index number N-1.

o All the elements of an array are stored in
a contiguous block of memory.

Figure 4-1

Index value Index value
for the 2nd element for the 5th element
AFFEI}" name ——- .ﬁFFEIF narme —-;
Y ¥ Y Y
helght[0] helght[1] helght[2] helght[3] helght[4] helght[5]
73 62 51 42 41 34

Flgure 4-1

The helght array has & elements.

Declaring Arrays

oint height[6];

= Because each i nt value occupies 4 bytes in
memory, the whole array requires 24 bytes.

0 doubl e horsepower [10] ;

= Q: How many bytes will be required for this
array?

Ooconst 1nt MAX = 20:
Oodouble mles [MAX |;

Using Arrays

0 Ex4_0O1.cpp on P.164

O cin >> gas[count];
ocin >> mles[count];

Ocout << (mles[i] — mles[i-1])/gas[i];

o If you use illegal index values, there are no
warnings produced either by the compiler or at
run-time.

= MAX=20, so index values 0~19 are legal.
= gas[-1] and gas[30] are illegal

Initializing Arrays

o To initialize an array in its declaration, you put
the initializing values separated by commas
between braces
= int apple = 10;
= int mles[5] = {1019, 1650, 2197, 2749, 3273};

o The array elements for which you didn’t provide
an initial value is initialized with zero.
= This isn’'t the same as supplying no initializing list.

= Without an initializing list, the array elements contain
junk values.

Initializing Arrays (2)

o A convenient way to initialize a whole
array to zero is simply to specify a single
initializing value as 0.
=int data[100] = { O };

O You may also omit the dimension of an
array of numeric type:
m=int value[] ={ 2, 3, 4} ;

= The number of elements in the array is
determined automatically.

Character Arrays and Strings

o An array of type char is called a character
array.
= It is generally used to store a character string.

= A string terminates with a null character,
which is defined by the escape sequence ‘\0'.
It is a byte with all bits as zero.

name[4] String termination
| character |

Each character in a string occupies Alllble]lr]t Eli|n]s|t]le]|i]|n|\O
one byte

char name[] = “Albert Einstein”;
Flgure 4-2

String Input

o const int MAX = 20;
o char name [MAX];

o cin.getline(name, MAX, ‘\n’);

The maximum number of characters

to be read. When the specifiaed
maximum has beean read, input stops.

The name of the array of type _—
char[] in which the characters
read from c¢in are to be stored.

k

b

¥

The character that is to stop the
input process. You can specify
any character here, and the first
occurance of that character will
stop the input process,

cin.getline(name , MAX, “\n’);

Flgure 4-3

String Input (2)

o It is your responsibility to ensure that the
array is large enough for any string you
might subsequently want to store.

= Q: Can the array “char nane[20] ” store the
string “12345678901234567890"7?

O The maximum number of characters read

is MAX-1 (rather than MAX),
= to allow for the * \ 0’ character to be appended.

o The “\n’ isn't stored in the input array
name

10

String Input (3)

O You may also use cin to input a string, but
please note that the delimiter of cin is
whitespaces.

= Q: If you supply “Albert Einstein”, what will
“cin >> nane” store into the string nane?

0 Ex4_03.cpp on P.170

11

Multidimensional Array

o An array can also have more than one
index value,

= in which case it is called a multidimensional
array.

= double matri x[3][7];
mmatrix[2][4] = 10.7

O Note that a two-dimensional array in
native C++ is essentially a one-
dimensional array of one-dimensional
array.

12

Initializing Multidimensional Arrays

o Initialize a two-dimensional array
Int data [2][4] = {
{1, 2, 3, 5},
{ 7, 11, 13, 17}
};
O You can omit initializing values in any row
Int data [2][4] = {
{1, 2, 3},
{ 7, 11}

13

Initializing Multidimensional Arrays (2)

o Initializing a whole array with zeros.
int data[2][4][6] = { O },;

o Storing Multiple Strings (2-dim char array)

char stars[][80] = { *“

}

Robert Redford”,
Hopal ong Cassi dy”,

“Lassi e”,
“SlimPi ckens”,
“Boris Karloff”,
“diver Hardy”

o Note that you cannot omit both array dimensions.

The rightmost dimension(s) must always be

defined.

14

Example: Coin Tossing

0 A coin has two sides — Head/Tail
= 0/1

O Repeat tossing the coin 20 times

o Count the occurrences of Head and Tail,
respectively.

15

Random Number Generator

orand()

= The function returns a pseudorandom
integer in the range 0 to RAND_MAX (32767)

[/ Print 5 random nunbers.

for (int 1 =0; I <05 I++)
cout << rand() << endl;

16

Seed of r and()

o With the same seed, the program will get
the same result at each execution.

o Use srand() and choose the current time
as the seed.

#1 ncl ude <time. h>

srand((unsigned) tinme(NULL));

for (int 1 =0; I <05; I++)
cout << rand() << endl;

17

Recursive Definition

o Fibonacci sequence
= F[0] =0, F[1] =1, F[n] = F[n-1] + F[n-2]
»m01123581321345589 144 ...

O Lucas sequence
= L[0] =2, L[1] =1, L[n] = L[n-1] + L[n-2]
m2134711182947 76 123 199 ...

O You may write a program to verify
mL[n] == F[n+2] - F[n-2]

18

Expected Result

Fi bonacci sequence:
011235813 21 34 55 89 144 233 377 610 987 1597 2584 4181

Lucas sequence:

21347 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349

L[2= 3
L[3]= 4
L[4= 7
L[5]= 11
L[6]= 18
L[7]= 29
L[8]= 47
L[9]= 76
L[10] = 12

L[11] = 19

L[12] = 32

L[13] = 521
L[14] = 843
L[15] =1364
L[16] =2207

L[17] =3571

F[4= 3
F[51= 5
F[6]= 8
F[7]= 13
F[8]= 21
F[9= 34
F[10]= 55
F[11]= 89
F[12] = 144
F[13] = 233
F[14] = 377
F[15] = 610
F[16] = 987
F[17] =1597
F[18] =2584
F[19] =4181

F[
FI
il
F[
FI
FI
FI
FI
FI
F[
F[10]
F[11] = 8

F[12] 144
F[13] =233
F[14] =377
F[15] =610

LROXN2TAEXN S
TR T TR T T TR TR TR TR TR T

G wNPEk
O'I-hHOOOOU'IOONHHO

3==3-20

4 == -1

7 == -1

11 == 13 - 2

18 == 21 - 3

29 == 34 - 5

47 == 55 - 8

76 == 89 - 13
123 == 144 - 21

199 == 233 - 34
322 == 377 - 55
521 == 610 - 89
843 == 987 144
1364 == 1597 - 233
2207 == 2584 - 377
3571 == 4181 - 610

19

int n = 0;

const int M= 20;
int L[M {2, 1};
int F[M {0, 1};

for
{

(n=2; n<M n++)

L[n]
F[n]

L[n-1] + L[n-2];
Fln-1] + F[n-2];

}

cout << "Fi bonacci " << endl;
for (n=0; n<M n++)
cout << F[n] << " ";

cout << endl;

sequence.

cout << "Lucas sequence: " << endl;
for (n=0; n<M n++)

cout << L[n] << " ";
cout << endl

for (n=2; n<M 2;
cout << "L["

n++)

<< setw2) << n << "]="

<< endl ;

<< setw(4) << L[n] << "\t"

<< "F[" << setwW2) << nt+2 << "] =" <<

<<
<<
<<
<<

"F[" << setwW(2) << n-2 << "]="
L[n] << (L[n]==F[n+2]-F[n-2]?"
Fln+2] << " - << F[n-2]
endl ;

<<

setw(4) << F[n+2] << "\t"
setwW3) << F[n-2] << "\t"
I=")

20

Indirect Data Access with Pointers

o Each memory location
which you use to store a
data value has an address.

o A pointer is a variable that
stores an address of
another variable (of a
particular type).

= e.dg., the variable pnunber
IS @ pointer

= It contains the address of
a variable of type i nt

= We say pnunber is of type
‘pointer to i nt .

3000
3004
3008
300C

- pnumber=0x3000

NYUNNEEE

21

Declaring Pointers

O To declare a pointer of type int, you may use
either of the following statements:
= int* pnunber;
= i nt *pnunber;

O You can mix declarations of ordinary variables

and pointers in the same statement:

= int* pnumber, number = 99;
Note that number is of type i nt instead of pointer to int.

o It is a common convention in C++ to use variable
names beginning with p to denote pointers.

22

Initializing Pointers

O int number = 0;
O int* pnumber = &number;

o int™ pnumber = NULL;
o int* pnumber = O;
= No object can be allocated the address O, so address O
indicates that the pointer has no target.
O You could test the pointer
= if (pnumber == NULL)
cout << endl << “pnumber is null.”;
= if (Ipnumber)
cout << endl << “pnumber is null.”;

23

The Address-Of Operator

o How do you obtain the address of a
variable?

= phnumber = &number;
Store address of number in pnumber

&number =

Address: 1008

v
number

pnumber

pnumber = &number;
Figure 4-5

The Indirection Operator

0 Use the indirection operator *, with a
pointer to access the contents of the
variable that it points to.
= Also called the “de-reference operator”

0 Ex4_05.cppon P.177

25

Why Use Pointers?

0 Use pointer notation to operate on data
stored in an array

o Allocate space for variables dynamically.

o Enable access within a function to arrays,
that are defined outside the function

26

Pointers to char

m char* proverb = “A stitch in tinme saves nine.”;
0 This looks similar to a char array.
= char proverb[] = “A stitch in time saves nine.”;

o It creates a string literal (an array of type const
char)

= with the character string appearing between the quotes,
and terminated with \O

O It also stores the address of the literal in the
pointer proverb.

o Compare Ex4_04 on P.173 with Ex4_06 on P.180

= cout will regard ‘pointer to char’ as a string

27

Arrays ot Pointers

char* pstr[] = { "Rober Redford",

b

"Hopalong Cassidy",
"Lassie",

"Slim Pickens",
"Boris Karloff",
"Oliver Hardy"

28

o Using pointers may eliminate the waste of
memory that occurred with the array version.

= In Ex4_04, the char array occupies 80 * 6 = 480 bytes.
In Ex4_06, the array occupies 103 bytes.

15 bytes
sR|o|b|le|r]|t Rle|d|T|o|r|dND
17 bytes
>H|o|pla|l|o|n|g| |clals|s]|i]|d|y|O
pStr[0] e
pstr[1] »Lials|s|i|e|\0
pstr[2]
pstr[3] 13 bytes
pstr{4] sis{i]|im| [plile|kle|n]s|o
pstr[5]
Pointer array 24 bytes 14 bytes
= B|lo|r|l|s Kla|r|l|o|T|T[MNO
13 bytes
ssol1[ifvlel[r] [H[a|r[d]y 0
Total Memory Is 103 bytes 29

Flgure 4-7

The sizeot Operator (1)

o One problem of Ex4_07 is that, the
number of strings (6) is “hardwired” in the
code.

o If you add a string to the list, you have to
modify the code to and change it to be 7.

o Can we make the program automatically
adapt to however many strings there are?

30

The sizeot Operator (2)

0 The sizeof operator gives the number of bytes
occupied by its operand
= It produces an integer value of type size_t.
m Size_t is a type defined by the standard library and is
usually the same as unsigned int.

o Consider Ex4 07

= cout << sizeof dice;

this statement outputs the value 4, because i nt occupies 4
bytes.

= cout << sizeof(int);

You may also apply the si zeof operator to a type name
rather than a variable

o Ex4_08.cpp can automatically adapts to an
arbitrary number of string values.

31

Pointers and Arrays

o Array names can behave like pointers.

= If you use the name of a one-dimensional array by itself,
it is automatically converted to a pointer to the first
element of the array

o If we have

= double* pdata;
= double data[5];
O you can write this assignment
= pdata = data;
Initialize pointer with the array address
= pdata = &data[1l];
pdata contains the address of the second element

32

Pointer Arithmetic

0 You can perform addition and subtraction
with pointers.

0 Suppose pdata = &data[2];

= The expression pdata+1 would refer to the
address of data[3];

= pdata +=1;
Increment pdata to the next element

The value of pdata will actually increase by
sizeof(double) instead of only 1.

= pdata++;

33

De-reference a Pointer with Arithmetic

O Assume pdat a is pointing to dat af 2],
= *(pdata + 1) = *(pdata + 2);
= is equivalent to
m data[3] = data[4];

double data[5];

data[0] data[1] data[2] data[3] data[4]
I e A
\ 4 ~ ~
.
Each element
occupies 8 bytes Address
pdata+1 pdata+2

‘F
pdata = &data[2];

Flgure 4-8
34

Dynamic Memory Allocation

o Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time

Int n = 0;
cout << "lInput the size of the vector - ";

error C2057: expected constant expression

35

Free Store (Heap)

o To hold a string entered by the user, there
IS N0 way you can know in advance how
large this string could be.

O Free Store - When your program is
executed, there is unused memory in your
computer.

O You can dynamically allocate space within
the free store for a new variable.

36

The new Operator

o Request memory for a double variable,
and return the address of the space
= doubl e* pval ue = NULL;

= pval ue = new doubl e;

o Initialize a variable created by new
= pval ue = new doubl €(9999. 0) ;

0 Use this pointer to reference the variable
(indirection operator)
= *pval ue = 1234. 0;

37

The delete Operator

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.
= del et e pval ue;

Release memory pointed to by pvalue
= pval ue = 0O;
Reset the pointerto O

o After you release the space, the memory
can be used to store a different variable
later.

38

Allocating Memory Dynamically tor Arrays

0 Allocate a string of twenty characters
= char* pstr;
m pstr = new char|[20];
mdelete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

mpstr = 0;
Set pointer to null

39

Dynamic Allocation of
Multidimensional Arrays

o Allocate memory for a 3x4 array
= doubl e (*pbeans)|[4];

= pbeans = new double [3][4];

o Allocate memory for a 5x10x10 array
= double (*pBigArray)[10][10];
= pBigArray = new double [5][10][10];

0 You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.

m delete [] pBigArray;

40

