Chapter 9

Class Inheritance and
Virtual Functions

Classes & Windows Programming

o The concept of “class” is
essential to Windows
programming.

= We have several objects in
Windows programming.
Each of them belongs to
different classes.

= You need to master the
concept of classes to
utilize these classes in
Windows programming.

MDI parent window

MDI child window

Toolbar

Menu bar

Title bar icon

Child window icon

Child window bar text

Title bar text

Status har Minimize button

Sizing horder
Child window client area
Parent window client area

Close button

Maximize button

Size grip

- Bx1_041

=JOtd

Window HElp

increasing y

CSEE b2 &R
L Ex1_041- [__“E]m
gl Position (0,0) increasing x >

|Ready

Figure 11-1

Object-Oriented Programming

o Real-world objects belongs to a particular class,
which are specified by a common set of
parameters (data members) and share a common
set of operations (member functions).

o Take the “Box” class for example. There may be
different kinds of boxes:
= Carton, candy boxes, cereal boxes, ...

0 You may define a class CBox with common
attributes,

0 And add some additional attributes to obtain new
classes.

o Re-use is the fundamental philosophy of OOP.

Figure 9-1

More General
A

class CBox

class CCarton

m_Length
m_Width
m_Height

A

m_MaxWeight

class CCandyBox

\J
More Specialized
Figure 9-1

m_Contents

class CCrate

m_nBottles

;

class CBeerCrate

m_Beer

Inheritance 1n Classes

o When you define one class based on another, the
former is referred to as a derived class, the
latter is referred to as a base class.
= CCandyBox is derived from CBox
= CBeerCrate is derived from CCrate

O The derived class will inherit from the base class
the data members and functions members.

o The only members of a base class that are not
inherited by a derived class are
= the destructor
= the constructors

= any member functions overloading the assignment
operator.

Figure 9-2

Derived Class

>
r o

Base Class Inherited
Members
Data Members
Function Members
Constructors 7 No
Destructor 7 No
Overloaded = operator ———/ No

Other Overloaded Operators

Figure 9-2

Data Members
Function Members

Other Overloaded Operators

Own Data Members
Own Function Members
Own Constructors

Own Destructors

Suppose We Have a Base Class

/1 Box.h in Ex9 01
#pragna once

cl ass CBox
{
publi c:
CBox(double Iv = 1.0, double w = 1.0, double hv = 1.0):
m Length(lv), mWdth(w), mHeight(hv){}

doubl e m Lengt h;
doubl e m W dt h;
doubl e m Hei ght;

b

Define CCandyBox as a Derived Class

/| Header file CandyBox.h in project Ex9 01
#pragna once
#i ncl ude "Box. h"
cl ass CCandyBox: CBox
{
publi c:
char* m Cont ents;

CCandyBox(char* str = "Candy") [/ Constructor
{
std::cout << "Constructor called.\n";
m Contents = new char[strlen(str) + 1];
strcpy_s(m Contents, strlen(str)+1, str);

}

~CCandyBox() /| Destructor
{ std::cout << "Destructor called.\n";
del ete[] m Contents; };

Using a Dertved Class

/1 Ex9 _01.cpp
/1l Using a derived cl ass

#i ncl ude <i ostreanr /[l For streaml|/O
#i ncl ude <cstring> /1 For strlen() and strcpy()
#i ncl ude " CandyBox. h" /| For CBox and CCandyBox

usi ng std::cout;
usi ng std::endl;

int main()

{
CBox nyBox(4.0, 3.0, 2.0); /1 Create CBox object
CCandyBox nyCandyBox;
CCandyBox nyM nt Box("Wafer Thin Mnts"); // Create CCandyBox object

Ex9_0l.cpp

cout << endl
<< "nyBox occupies << sizeof nyBox // Show how nuch nmenory
<< " bytes" << endl /'l the objects require
<< "nmyCandyBox occupies " << sizeof nyCandyBox
<< " bytes" << endl
<< "nmyM nt Box occupi es
<< " bytes";

<< si zeof nyM nt Box
cout << endl

<< "nyBox length is " << nyBox.m Lengt h;
myBox. m Length = 10. O;
/1 nmyCandyBox. m Length =

cout << endl;
return O;
} Q: Isn't the size of myCandyBox
24+4=28 bytes?

Uncomment a Line

cout << endl
<< "nyBox occupies " << sizeof nyBox // Show how much nenory
<< " bytes" << endl /1 the objects require

<< "nyCandyBox occupies " << sizeof mnmyCandyBox
<< " bytes" << endl

<< "nyM nt Box occupies " << sizeof myM nt Box
<< 1] byt eS" ’

cout << endl
<< "nyBox length is "

myBox. m Length = 10. O;

myCandyBox. m Lengt h = 10. O;
cout << endl;
return O;

Declare the publ I € access specifier for
the base class

cl ass CCandyBox: public CBox

{ -
publ i c:
char* m Contents; O
CCandyBox(char* str = "Candy") /| Constructor
{

m Contents = new char] strlen(str) + 1];
strcpy_s(m Contents, strlen(str)+ '

12

If the data members are private

cl ass CBox

{
public:
CBox(double |Iv = 1.0, double w = 1.0, double hv = 1.0):
m Cength(TVv), m Wdth(w), m Hei ght (hv){}
private:
doubl e m Lengt h;
doubl e m W dt h;
doubl e m Hei ght;
3
cl ass CCandyBox: CBox
{

public:
char* m Cont ents;

/'l Function to calculate the v of a CCandyBox obj ect
doubl e Vol une() const // Er - menbers not accessible
{ return mLength*m Wdth*m Hei ght; }

CCandyBox(char* str = "Candy") /1 Constructor
{

m Contents = new char[strlen(str) + 1];
strcpy_s(mContents, strlen(str)+1, str);

}

~CCandyBox() [l Destructor
{ delete[] mContents; }; 13

Ex9 02

o Move the definition of the function Volume() to
the public section of the base class.

o The output will be
= myBox occupies 24 bytes
= myCandyBox occupies 32 bytes,
containing “Candy”
= myMintBox occupies 32 bytes
containing “Wafer Thin Mints”

= myMintBox volume is 1,

CBox () default constructor was called to create the base
part of the object.

14

Constructor Operator in a Dertved Class

cl ass CCandyBox o Private members of a
base class are
. inaccessible in a
(lega:;: 2 m—b\fggthh derived class object,
= so responsibility for
doubl e m Hei ght; these has to lie with
the base class
constructors.

0 The default base class
constructor was called
automatically in the
last example.

15

Calling Constructors

o Ex9 03 in P.517

o In CandyBox.h
= Calling the base class constructor

= CCandyBox(double lv, double wv, double hv, char* str =
"Candy") :CBox(lv, wv, hv)

o Output:

CBox constructor called

CBox constructor called
CCandyBox constructorl called
CBox constructor called
CCandyBox constructor2 calle
myCandyBox occupies 32 bytes

myMintBox occupies 32 bytes
myMintBox volume is 6

Declaring Class Members to be Protected

0 Members in protected section cannot be
accessed by ordinary global function,

= but they can be accessible to member
functions of a derived class.

0o See Ex9 04 in P.520

= In the previous example, Vol ume() must be
defined in CBox to access m Lengt h.

= Notice the calling sequence of constructors and
destructors as shown in the output in P.521.

Destructors for a derived class object are called in
the reverse order.

17

Access Level of Inherited Class Members

o If you have no access specifier, the default
specification is private.
= The inherited publ i c and pr ot ect ed members become
privat e in the derived class.

= The private members will not be inherited.

o If you use publ i c as the specifier for a base class,

= The publi c members remain publi ¢, and prot ect ed
members remain pr ot ect ed.

o If you declare a base class as prot ect ed,

= The publ i c members are inherited as pr ot ect ed,

= The protected and pri vat e members retain their
original access level

18

class CABox:public CBox
{

Figure 9 — 3 inherited as— » p‘u.I::Iic:

inherited as —— protected:

&

class CBox
{ . class CBEox:protected CBox
public: {
G inherited as ——» protected:
protected: s
s I— inherited as ———» protected:
private: } .
}
No access - ever. class CCBox:private CBox
{
inherited as —— private:
inherited as —— private:
1
Figure 9-3

19

T
C

ne Copy Constructor in a Derived
ass

O

The cop?/ constructor is called automatically when
you declare an object that is initialized with an
obJect of the same class.
= CBox myBox(2.0, 3.0, 4.0);
// Calls constructor
= CBox copyBox(myBox);
// Calls copy constructor

o The compiler supplies a default copy constructor,

which copies the initializing object member by
member to the new object.

O You may define your own copy constructor, but

remember that the copy constructor must have
its parameter specified as a reference to avoid an
infinite number of calls to itself (P.379).

20

Microsoft Visual C++ Debug Library

6 Debug Assertion Failed!

Program: ...visual c++.net\code\chapter 09\ex9_05'ex9_05\debug\Ex9_05.exe
File: dbgdel.cpp
Line: 52

Expression: BLOCK _TYPE_ IS VALID(pHead->nBlodklse)

For information on how your program can cause an assertion
failure, see the Visual C++ documentation on asserts.

(Press Retry to debug the application)

Retry Ignore

o Click Abort, and you’ll see the output that
you expect in the console window.

21

Why It Doesn't Work

0 The m Cont ent s member in the second

object points to the same memory as the
one in the first object.

chocBox chocolateBox

22

Why It Doesn't Work (2)

0o When the first object is destroyed, it
releases the memory occupied by the text.

chocBox chocolateBox

o When the second object is destroyed, the destructor attempts
to release some memory that has already been freed.

Fixing the Copy Constructor Problem

/] Derived class copy constructor
CCandyBox(const CCandyBoxé& i nit CB)
{

cout << endl << "CCandyBox copy constructor
cal | ed";

/] Get new nenory

m Contents = new char[strlen(initCB. mContents) +
11

[l Copy string

strcpy_s(m Contents, strlen(initCB. mContents) +
1, initCB. mContents);

24

The problem of dynamic memory

allocation 1s solved, but ...

O You see the output as in P.527
CBox constructor call ed

CCandyBox constructor2 called
CBox constructor called

CCandyBox copy constructor call ed
Vol ume of chocBox is 24

Vol une of chocolateBox is 1
CCandyBox destructor called

CBox destructor call ed

CCandyBox destructor call ed

CBox destructor call ed

25

Solution

o Call the copy constructor for the base part of the
class in the initialization list for the copy
constructor for the CCandyBox class.

CCandyBox(const CCandyBox& initCB): CBox(initCB)
{

cout << endl << "CCandyBox copy constructor called";

// Get new memory
m_Contents = new char[strlen(initCB.m_Contents) + 1];

// Copy string

strcpy_s(m_Contents, strlen(initCB.m_Contents) + 1,
initCB.m_Contents);

¥

26

The Copy Constructor 1s Correctly
Called

CBox constructor call ed

CCandyBox constructor2 call ed
CBox copy constructor called
CCandyBox copy constructor call ed
Vol une of chocBox is 24

Vol une of chocol ateBox I1s 24
CCandyBox destructor call ed

CBox destructor called

CCandyBox destructor call ed

CBox destructor called

27

Class Members as Friends

o A friend function has the privilege to access any of the class
members (private or public).
o See the example on P.528.

= We need a carton to package a dozen bottles.

= The constructor CCarton: : CCarton() tries to access the
height of the bottle.

m This doesn’'t work because the data members of the CBottle
class are private.

o Declare the carton constructor in CBottle:
m friend CCarton::CCarton(const CBottle& aBottle);

o You may also allow all the function member in CCarton to
access the members in CBottle
m friend CCarton;

o Class friendship is not inherited.

= If you define another class with CBottle as a base, member of
CCarton class will not have access to its data members.

28

Virtual Functions

O Let us look closely at inherited member functions.

O Box. hin P.531

= Vol une() — Calculate the volume of a CBox object
= Showvol une() - Output the volume of a CBox object

m CBox() — The constructor sets the data member values
in the initialization list
:m Length(lv), mWdth(w), mHeight(hv)
SO no statements are necessary in the body of the
function.

= Data members are specified as pr ot ect ed, so they are
accessible to the member functions of any derived class.

29

GlassBox.h

O Suppose we need a different kind of box
to hold glassware.

o The contents would be fragile.

= Some packaging material is added to protect
them, so the capacity of the box is less than
the capacity of a basic CBox object.

= You need a different Vol une() function to
calculate the volume.

GlassBox.h in P.531
return 0.85*m_Length*m_Width*m_Height;

30

Ex9_006.cpp

o Try It Out
i nt main()
{
CBox nyBox(2.0, 3.0, 4.0); /| Declare a base box
Cd assBox nyd assBox(2.0, 3.0, 4.0); // Declare derived box -
sane size
my Box. ShowVol une() ; /1l Display volunme of base box
myd assBox. Showvol une() ; /[l Display volunme of derived box

cout << endl ;
return O;

}

o The output is
m CBox usable volume is 24
m CBox usable volume is 24

31

Why Doesn't It Work?

0 The volume of a Cd assBox object should
be only 85% of a CBox with the same

dimension.

0 Reason:

= The call of the Vol une() function in the
function Showvol une() is being set once and

for all by the compiler (as the version defined
in the base class).

= The compiler has no knowledge of any other
Vol urme() function.

= This is sometimes called early binding.

32

What Are We Hoping For?

0o We want the actual version of the function
Vol une() invoked by Showvol une() to be

determined by the object being processed.

0 This is sometimes called dynamic linkage,
or late binding.

o C++ provides the mechanism of virtual
function to support this.

33

Fixing the CGlassBox

0 Box.h & GlassBox.h in P.533

= The keyword vi rtual is added to the
definitions of the Vol unme() function in the two
classes.

o The result is what we expected
= CBox usable volune is 24

m CBox usable volune i1s 20.4

o The ability to use virtual functions for late
binding is referred to as the mechanism of
Polymorphism in Object-Oriented
Programming.

34

Using Pointers to Class Objects

o Pointers to Base and Derived Classes

CBox nyBox(2.0, 3.0, 4.0); /| Declare a base box

Cd assBox nyd assBox(2.0, 3.0, 4.0); // Declare derived box of
sane size

CBox* pBox = 0; /] Declare a pointer to base class objects

pBox = &nyBox; /] Set pointer to address of base object

pBox- >ShowVol ume(); // Display volume of base box
pBox = &nyd assBox; // Set pointer to derived class object
pBox- >ShowVvol une(); // Display volune of derived box

cout << endl;
return O;

o A pointer to a base class object can be assigned the address of a derived
class object as well.

35

Figure 9-5

pBox->ShowVolume()

Pointer this
is set to pBox

l classCBox
virtual double Volume () const

void ShowVolume() const 0.}
{ /
cout << endl

S

<< “CBox usable volume is " pBox pointing to

CBox object
—.._..—-—-—"—‘—H_/
<< Volume();
) T

pBox pointing to
CGlassBox object

T~

classE&La\ssBox

virtual double Volnme () const
{...}

Figure 9-5

Pure Virtual Functions

O Cont ai ner. hin P.538
= virtual double Volune() const =0

= This statement declares a pure virtual function.

O A class containing a pure virtual function
is called an abstract class.

= It is called abstract because you cannot define
objects of a class containing a pure virtual
function.

= It exists only for the purpose of defining
classes that are derived from it.

37

Indirect Base Classes

More General

A

Y

More Specialized

Direct base of CCan

class CContainer

Direct base of CBox

Indirect base of CGlassBox

/ \ Direct base of CGlassBox

class CCan

class CBox

\

class CGlassBox

Figure 9-6

38

Ex9 11

o GlassBox.h in P.542

= It does not define ShowVolume().
o Box.h in P.539

= Class CBox derived from CContainer
o Can.h in P.540

= Class CCan derived from CContainer

0 Ex9_11.cpp in P.543

m CBox usable volume is 24
= Volume is 45.9458
m CBox usable volume is 20.4

39

Virtual Destructors

0 One problem of derived classes using a
pointer to the base class is that, the
correct destructor may not be called.

O Let us output a message for tracking in
the destructor.
= Container.h in P.545
= Can.h
= Box.h
= GlassBox.h

40

Wrong Destructors Are Called

O

OO0

OO0OoOooOooOooao

CBox usable volume is 24
Delete CBox
CContainer destructor called

CBox usable volume is 102

Delete CGlassBox

CContainer destructor called
Volume is 45.9458

CBox usable volume is 20.4
CGlassBox destructor called
CBox destructor called
CContainer destructor called
CCan destructor called
CContainer destructor called

41

Correcting the Problem

o The reason is that, the compiler only know

the pointer type is a pointer to the base
class CCont ai ner.

0 We can declare the destructor of the base
class to be virtual, so that it will be
resolved dynamically.

m P.549

42

Casting Between Class Types

O You have seen how to store the address of a CBox
object to a variable of type CCont ai ner *.

= Store the address of a derived class object in a variable of
a base class type.

o How do you store an address of type CCont ai ner *
to a variable of type CBox*
= CBox* pBox = dynam c_cast <CBox*>(pCont ai ner) ;

o The difference between dynani ¢c_cast and

static_cast:

= dynam c_cast operator checks the validity of a cast at
run-time, while stati c_cast operator does not.

= If a dynam c_cast operation is not valid, the result is null.

43

