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Abstract

Teredo is a service that enables hosts located behind 

one or more IPv4 NATs to obtain IPv6 connectivity by 

tunneling packets over IPv4 UDP.  Under the national 

IPv6 deployment project in Taiwan, we developed the 

first Linux-based Teredo service in 2003. In this paper, 

we explain how IPv6 candidates located behind NATs 

can enlist the help of “Teredo servers” and “Teredo 

relays” to learn their “global addresses” and to obtain 

connectivity, and how clients, servers and relays can be 

organized in Teredo networks. We also describe in details 

our strategies for implementing Teredo server and Teredo 

relay under Linux, and show the performance of different 

Teredo implementations in public domain.
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1. Introduction 

After three decades of evolution in Internet 

technologies, IETF (Internet Engineering Task Force) 

has developed Internet Protocol version 6 (IPv6) as the 

next generation Internet protocol. In comparison with the 

existing Internet Protocol version 4 (IPv4), IPv6 provides 

larger address space, more efficient routing mechanism, 

better support to security mechanism and quality of 

service (QoS). 

During the IPv6 deployment stage, many existing IP 

networks remain to support IPv4 only.  Because each 

site may deploy IPv6 in a highly diffuse and incremental 

fashion, it is unrealistic to assume a single Flag Day to 

upgrade all IPv4 networks to IPv6. To facilitate the 

transition for IPv4 to IPv6 migration, tunneling

techniques are utilized as a routing infrastructure to carry 

IPv6 traffic through IPv4 networks [1]. 

In existing IPv6-in-IPv4 tunneling mechanisms such 

as configured tunnel & automatic tunnel [1], 6to4 tunnel 

[2] and tunnel broker [3], both end points of a tunnel 

must possess public IPv4 addresses. Although public 

IPv4 addresses may be available in normal scenarios, 

many Internet service providers, especially WLAN 

(wireless local area network) and GPRS (general packet 

radio service), usually provide private IPv4 addresses to 

their customers, and NAT (network address translation)

[4] is utilized to establish Internet connectivity. Hence, 

IPv6 users behind the NAT would be unable to establish 

tunnels to other IPv6 networks. This turns out to be one 

of the major obstacles in IPv6 deployment.

Several solutions for tunneling IPv6 packets through 

NAT have been proposed, including VPN (virtual private 

network) and UDP tunnel [5]. These solutions provide 

IPv6 connectivity for private hosts. However, they have 

the scalability problem because manual configuration is 

required for the user end of a tunnel. This configuration 

is not an easy task for common users, and is not suitable 

for ISP to perform large deployment. Moreover, in these 

approaches, only one static tunnel server is assigned to 

relay all IPv6 packets of the private network. This tunnel 

server may potentially become the bottleneck, and it is 

very likely that the traffic follows a “dog leg” route from 

the source to the tunnel server and then to the destination 

that is not an optimal routing path.  Recently, an 

enhanced model of UDP tunnel called “Silkroad” [6] was 

also proposed to alleviate the bottleneck issue. However, 

some critical algorithms are still missing in the draft to 

have a thorough investigation on its performance. To 

solve the above issues, Teredo [7] was proposed as an 

automatic tunneling mechanism that is capable of 

traversing NATs. 

Under the support of NICI (National Information and 

Communication Initiative), we developed the first 

Linux-based Teredo to speed up the IPv6 deployment in 

Taiwan. In this paper, we shall introduce the Teredo 

mechanism that helps tunneling IPv6 through NAT, and 

then describe our implementation of Teredo and the 

performance measurement. 
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Figure 1. Teredo architecture 

2. The Teredo solution 

Teredo provides IPv6 connectivity for IPv6 hosts on 

private IPv4 networks with NAT by tunneling IPv6 

packets over IPv4 UDP. The Teredo architecture is 

illustrated in Figure 1, which consists of a Teredo server 

(Figure 1 (a)), several Teredo clients (Figure 1 (b)) and 

Teredo relays (Figure 1 (c)). A Teredo client provides a

Teredo tunnel interface for an IPv6 host on a private IPv4 

network (Figure 1 (d)) that connects to IPv4 Internet 

(Figure 1 (e)) with NAT (Figure 1 (f)). A Teredo server 

assists a Teredo client to obtain IPv6 address for IPv6 

Internet access. The Teredo server is stateless and only 

has to handle a small volume of traffic. A Teredo relay 

encapsulates IPv6 packets addressed to Teredo clients in 

IPv4 UDP, and decapsulates IPv4 UDP packets sent from 

the Teredo client to IPv6. Every Teredo relay advertises a 

3FFE:831F::/32 IPv6 address prefix to IPv6 Internet 

(Figure 1 (g)). With the advertisement, all IPv6 packets 

sent from different IPv6 hosts (Figure 1 (h)) to a Teredo 

client are routed to Teredo relays closest to the packet 

sources, and therefore traffic load can be dynamically 

shared among Teredo relays.

The NAT translates the private IPv4 address of all 

pass-through packets according to an address mapping 

table. Suppose that the NAT is a “full cone” NAT [8], its 

address mapping table consists of the following fields 

(see Figure 2).  

Figure 2. Address mapping table format 

As an automatic tunneling mechanism, Teredo 

embeds the NAT traversal information in its 128-bit IPv6 

address. A Teredo IPv6 address format consists of the 

following fields (see Figure 3). The “3FFE:831F::/32” 

field specifies the IPv6 address prefix of Teredo. The 

“Teredo server IPv4 address” field indicates the IPv4 

address of a Teredo server. The “Flag” filed indicates the 

type of NAT (“full cone” or not) [8]. The “Obfuscated 

mapped public UDP port” and the “Obfuscated mapped 

public IPv4 address” fields indicate the public trasnport 

address on NAT that is mapped from the Teredo client’s 

private transport address. 

The necessity for the obfuscation mechanism is that, 

some “smart NAT” scans payload of pass-through IPv4 

packets and translates any 32-bit substring in the payload 

that matches the address to be translated in the IPv4 

header (or translates any 16-bit substring in the payload 

that matches the port to be translated in the TCP/UDP 

header). Therefore, to prevent these “smart NATs” from 

modifying the Teredo IPv6 addresses in the encapsulated 

IPv4 UDP packets, obfuscation performs bitwise XOR 

operation on the original value with 1 to “protect” it. 

A Teredo client obtains a Teredo IPv6 address from 

the Teredo server after performing a qualification

procedure. This procedure detects the NAT type and 

informs the Teredo client about the public mapped 

transport address.  As long as Teredo clients get Teredo 

IPv6 addresses, they are able to communicate with IPv6 

Internet with the help of Teredo servers and Teredo relays. 

The details are described in an example below. 
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Figure 4. Communication between a Teredo client and an IPv6 host 

Communication between a Teredo client and an IPv6 

host is illustrated in Figure 4. In this example, the IPv4 

address of the Teredo server is 3.3.3.3. The NAT has two 

interfaces: the WAN interface has public IPv4 address 

1.1.1.1, while the LAN interface has private IPv4 address 

192.168.0.1. The Teredo client has IPv4 address 

192.168.0.2. Suppose that the Teredo client uses UDP 

port 4096 to request a Teredo address from the Teredo 

Server. When this packet arrives at the NAT, the NAT 

dynamically allocates an available UDP port (2048 in 

this example) for this connection, and creates an entry in 

the mapping table with private transport address 

192.168.0.2:4096 and public transport address 

1.1.1.1:2048.   

The Teredo server calculates the Teredo IPv6 address 

of this client by determining the values of each field: 

� Prefix (32 bits) = 0x3FFE831F 

� Teredo server IPv4 address (32 bits) = 3.3.3.3 = 

0x03030303 

� Flag (16 bits) = 0x8000 (“full cone” NAT) 

� Obfuscated mapped public UDP port (16 bits) = 2048

�0xFFFF = 0x0800�0xFFFF = 0xF7FF 

� Obfuscated mapped public IPv4 address (32 bits) = 

1.1.1.1 � 0xFFFFFFFF = 0x01010101 �
0xFFFFFFFF = 0xFEFEFEFE 

Therefore, the Teredo IPv6 address assigned by the 

Teredo Server to this Teredo client is 

3FFE:831F:0303:0303:8000:F7FF:FEFE:FEFE.  

Suppose that an IPv6 packet is delivered from an 

IPv6 host to a Teredo client. The detailed steps are 

described as follows. 

Step 1. The IPv6 packet is sent from the IPv6 host to 

the Teredo relay.

Step 2. The Teredo relay encapsulates the IPv6 packet 

in IPv4 UDP. The IPv4 address information and UDP 

port information of this packet are determined based on 

Teredo IPv6 address as follows. The source IPv4 address 

is the IPv4 address of the Teredo relay (2.2.2.2), and the 

destination IPv4 address is the “original value” derived 

from the “Obfuscated mapped public IPv4 address” field 

of destination IPv6 address (0xFEFEFEFE �
0xFFFFFFFF = 0x01010101 = 1.1.1.1). The source UDP 

port is 3544, and the destination UDP port is the “original 

value” derived from the “Obfuscated mapped public 

UDP port” field of destination IPv6 address (0xF7FF�
0xFFFF = 0x0800 = 2048). The Teredo relay sends the 

IPv4 UDP packet to the NAT (1.1.1.1) through IPv4 

Internet. 

Step 3. After the NAT receives this IPv4 UDP packet, it 

translates the destination IPv4 address and destination 

UDP port from 1.1.1.1:2048 to 192.168.0.2:4096 

according to the address mapping table, and then sends it 

to the Teredo client. 

Upon reception of the packet, the Teredo client 

.1 
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decapsulates the IPv4 UDP packet and obtains the IPv6 

packet sent from the IPv6 host.

For scenarios of traversing other types of NATs 

(restricted cone and port-restricted cone) and scenarios of 

packets transmission from Teredo clients to public IPv6 

hosts, please refer to the Teredo draft [7] for details. 

2.1. Linux-based Teredo 

This subsection describes a Teredo implementation 

on Linux, namely, NICI-Teredo [9]. During its 

development in 2003, an independent implementation for 

FreeBSD was also developed by 6WIND [10], and in 

2004, Miredo-Teredo was also developed on Solaris, 

FreeBSD, and Linux [11]. 

NICI-Teredo supports Teredo server and Teredo relay 

functions that can be installed on a single host or 

independently on distributed hosts. The Teredo server 

function is developed in a user level daemon. A user level 

daemon is sufficient since a Teredo server is stateless 

with small volume of traffic to handle. The Teredo relay 

function is developed with a combination of a user level 

program and a kernel level module. A user level program 

deals with NICI-Teredo relay configuration, while a 

kernel level module provides a high speed IPv6 packet 

relaying function. Detailed software architectures of 

NICI-Teredo are described as follows. 
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Figure 5. Architecture of NICI-Teredo server
NICI-Teredo server (Figure 5 (a)) creates two IPv4 

Internet connected UDP sockets (Figure 5 (b)) and an 

IPv6 Internet connected raw ethernet socket (Figure 5 (c)) 

on execution. These sockets allow this daemon to receive 

and transmit IPv6 packets. NICI-Teredo server consists 

of four components. The “packet processor” (Figure 5 1 )

handles IPv6 packets encapsulation and IPv4 UDP 

packets decapsulation. The “dispatcher” (Figure 5 2 )

checks the IPv6 packets delivered from the “packet 

processor” and dispatches them to the proper functions. 

The “qualification function” (Figure 5 3 ) provides 

capability to perform qualification procedure for Teredo 

clients. It helps the Teredo client to discover the type of 

NAT and the mappped public transport address. The 

“ICMPv6 relay function” serves as a message relay for 

Teredo clients to find a closest Teredo relay. Detailed 

operations of these functions can be found in the draft 

and are not elaborated in this paper. 
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Figure 6. Architecture of NICI-Teredo relay

NICI-Teredo relay (Figure 6 (a)) provides the IPv6 

packet relay function with the help of IPv6 and IPv4 

forwarding (Figure 6 (b) and (c)) mechanisms in Linux 

kernel. This Teredo relay consists of three modules. The 

“relay module” (Figure 6 1 ) provides IPv6 packets 

encapsulation and decapsulation functions. It 

encapsulates the IPv6 packets forwarded from IPv6 

routing mechanism in IPv4 UDP, and then passes them to 

IPv4 routing mechanism where they will be delivered to 

the Teredo clients. The encapsulated IPv6 packets are 

also handled by this module. It decapsulates these 

packets to IPv6, and then passes them to IPv6 routing 

mechanism where they will be delivered to normal IPv6 

hosts.  The “routing management module” (Figure 6 2 )

manages the packet forwarding plans in kernel. It 

configures the IPv6 forwarding plan to forward IPv6 

packets which are destined to Teredo clients (destination 

IPv6 address matches 3FFE:831F::/32 prefix) to the 

“relay module”, and configures the IPv4 forwarding plan 

to forward IPv4 UDP packets sent from Teredo clients to 

the “relay module”. The “prefix advertisement module” 

(Figure 6 3 ) advertises the 3FFE:831F::/32 IPv6 address 

prefix to IPv6 Internet. This advertisement helps IPv6 

packets destined to Teredo clients being routed to the 

closest Teredo relay in IPv6 networks. 
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Figure 7. Measurement environment
In comparison with other Linux-based Teredo relay 

[10,11], the packet relay function of NICI-Teredo relay is 

developed in a kernel level module while that of 

Miredo-Teredo relay is developed in a user level program. 

The packet processing latency of NICI-Teredo relay is 

thus shorter because there are no packet copying 

operations between kernel level and user level. This will 

be elaborated in next section. Moreover, NICI-Teredo 

relay provides a simple way for installation though it 

involves kernel hacking. Since this module is dynamic 

loadable, the installation does not need to modify or 

re-compile the Linux kernel.

3. Performance measurement 

Teredo relay is the bottleneck component in Teredo 

mechanism which will handle large volume of network 

traffic. In this section, we measure the performance of 

different implementations of Teredo relays. The output 

measurement is “packet processing latency”, which 

includes both packet encapsulation latency (from a 

public IPv6 host to a private Teredo client) and packet 

decapsulation latency (from a private Teredo client to a 

public IPv6 host). 

The measurement environment consists of three hosts 

(see Figure 7). This environment follows the Teredo 

architecture in Figure 1. According to the testing 

architecture in RFC 2544 [12], we use a tester (Figure 7 

(a)) which configures both the Teredo client function and 

the IPv6 host on it. This IPv6 host runs on Redhat Linux 

9 with an IPv4 UDP daemon to simulate the Teredo client 

function. The NAT (Figure 7 (b)) runs on Redhat Linux 9 

with address mapping rule set by iptables. The DUT 

(device under test) is the Teredo relay (Figure 7 (c)) in 

three different versions. It runs on Redhat Linux 9 for 

NICI-Teredo relay measurement and Miredo-Teredo 

relay measurement, and runs on FreeBSD 4.9 for 

6WIND-Teredo relay measurement. The hardware 

specification of these hosts is the same, which is a 

personal computer (PC) with 1800+ AMD Athlon CPU, 

256 MB SDRAM and two RealTek 8139 100BaseTx 

Ethernet cards. 

In the measurement, a C program with pcap library 

[13] is used for catching the packet receiving and 

delivering timestamps. Pcap is a packet capturing library 

supported on multiple operating systems. The tests 

follow the packet sending rule as the round-trip time 

measurement utility ping. That is, we send one packet per 

second to the Teredo relay for encapsulation or 

decapsulation, and measure the packet processing latency.  

Tests are conducted with three different packet sizes (64 

bytes, 512 bytes, 1280 bytes), respectively.  Each test 

generates 10,000 packets. 

Figure 8 shows the packet encapsulation latency 

histograms of the three Teredo relays (payload size is 

1280 bytes, the IPv6 MTU of Teredo). The latency of the 

NICI-Teredo relay clusters around 7µs~9µs and 

11µs~13µs; the latency of the 6WIND-Teredo relay is 

around 11µs~15µs; the latency of Miredo-Teredo relay 

clusters is around 28µs~32µs and 37µs~40µs. The 

1280-byte packet decapsulation latency histogram is 

similar to Figure 8, and the average packets processing 

latency of the three Teredo relays are listed in Table 1. 

With different packet sizes, the encapsulation and 

decapsulation latency histograms of NICI-Teredo relay 

and 6WIND-Teredo relay are similar to the histogram in 

Figure 8, while those of Miredo-Teredo relay takes 

longer delay when the packet size grows bigger. 
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Table 1. Average processing latency 
Teredo 

relay 

Avg. latency of 

encapsulation (µs) 

Avg. latency of 

decapsulation (µs) 

NICI 7.82 9.03 

6WIND 13.53 14.63 

Miredo 30.46 33.14 

4. Conclusions & Future Work 

This paper introduces the NAT traversal problem in 

IPv6 deployment process in Taiwan. We developed 

NICI-Teredo with a pretty good performance to solve the 

NAT problem. NICI-Teredo is also the first Teredo 

implementation on Linux. As a NAT traversable 

automatic tunneling mechanism, Teredo greatly 

simplifies the IPv6 deployment process and facilitates 

the IPv6 transition stage. 

Although Teredo is a useful mechanism, it does not 

work for all kinds of NAT devices. According to the rules 

for port mapping and access control, there are different 

types of NATs. As described in RFC 3489, the four major 

types are full cone NAT, restricted cone NAT, port 

restricted cone NAT, and symmetric NAT. Although 

Teredo can successfully traverse the former three types of 

NATs, it fails in traversing symmetric NATs. Whether it 

is possible to enhance the protocol design of Teredo so 

that it could traverse symmetric NATs, is still an open 

problem for further research. 
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