
1

Tunneling IPv6 through NAT with Teredo Mechanism

Shiang-Ming Huang, Quincy Wu, Yi-Bing Lin
Department of Computer Science and Information Engineering

National Chiao Tung University
{smhuang,solomon,liny}@csie.nctu.edu.tw

Abstract

Teredo is a service that enables hosts located behind

one or more IPv4 NATs to obtain IPv6 connectivity by

tunneling packets over IPv4 UDP. Under the national

IPv6 deployment project in Taiwan, we developed the

first Linux-based Teredo service in 2003. In this paper,

we explain how IPv6 candidates located behind NATs

can enlist the help of “Teredo servers” and “Teredo

relays” to learn their “global addresses” and to obtain

connectivity, and how clients, servers and relays can be

organized in Teredo networks. We also describe in details

our strategies for implementing Teredo server and Teredo

relay under Linux, and show the performance of different

Teredo implementations in public domain.

Keywords: IPv6, Teredo, Tunneling, NAT.

1. Introduction

After three decades of evolution in Internet

technologies, IETF (Internet Engineering Task Force)

has developed Internet Protocol version 6 (IPv6) as the

next generation Internet protocol. In comparison with the

existing Internet Protocol version 4 (IPv4), IPv6 provides

larger address space, more efficient routing mechanism,

better support to security mechanism and quality of

service (QoS).

During the IPv6 deployment stage, many existing IP

networks remain to support IPv4 only. Because each

site may deploy IPv6 in a highly diffuse and incremental

fashion, it is unrealistic to assume a single Flag Day to

upgrade all IPv4 networks to IPv6. To facilitate the

transition for IPv4 to IPv6 migration, tunneling

techniques are utilized as a routing infrastructure to carry

IPv6 traffic through IPv4 networks [1].

In existing IPv6-in-IPv4 tunneling mechanisms such

as configured tunnel & automatic tunnel [1], 6to4 tunnel

[2] and tunnel broker [3], both end points of a tunnel

must possess public IPv4 addresses. Although public

IPv4 addresses may be available in normal scenarios,

many Internet service providers, especially WLAN

(wireless local area network) and GPRS (general packet

radio service), usually provide private IPv4 addresses to

their customers, and NAT (network address translation)

[4] is utilized to establish Internet connectivity. Hence,

IPv6 users behind the NAT would be unable to establish

tunnels to other IPv6 networks. This turns out to be one

of the major obstacles in IPv6 deployment.

Several solutions for tunneling IPv6 packets through

NAT have been proposed, including VPN (virtual private

network) and UDP tunnel [5]. These solutions provide

IPv6 connectivity for private hosts. However, they have

the scalability problem because manual configuration is

required for the user end of a tunnel. This configuration

is not an easy task for common users, and is not suitable

for ISP to perform large deployment. Moreover, in these

approaches, only one static tunnel server is assigned to

relay all IPv6 packets of the private network. This tunnel

server may potentially become the bottleneck, and it is

very likely that the traffic follows a “dog leg” route from

the source to the tunnel server and then to the destination

that is not an optimal routing path. Recently, an

enhanced model of UDP tunnel called “Silkroad” [6] was

also proposed to alleviate the bottleneck issue. However,

some critical algorithms are still missing in the draft to

have a thorough investigation on its performance. To

solve the above issues, Teredo [7] was proposed as an

automatic tunneling mechanism that is capable of

traversing NATs.

Under the support of NICI (National Information and

Communication Initiative), we developed the first

Linux-based Teredo to speed up the IPv6 deployment in

Taiwan. In this paper, we shall introduce the Teredo

mechanism that helps tunneling IPv6 through NAT, and

then describe our implementation of Teredo and the

performance measurement.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

2

private IPv4
address

private port
public IPv4

address
public port

UDP: 4096
IPv4: 192.168.0.2
IPv6: 3FFE:831F:0303:0303:8000:F7FF:FEFE:FEFE

NAT
Public IPv4: 1.1.1.1
Private IPv4: 192.168.0.1

Teredo server

Teredo relay

IPv6 hostTeredo client

UDP: 3544
IPv4: 2.2.2.2
IPv6: 2001:2:2:2::2

UDP: 3544
IPv4: 3.3.3.3
IPv6: 2001:3:3:3::3

IPv4 Internet

IPv6 Internet

Advertising
3FFE:831f::/32

IPv6

IPv6 over IPv4 UDP

IPv6: 2001:4:4:4::4

(a)

(b)

(c)

(d)

(f)

(g)

(h)Private IPv4
network

(e)

Figure 1. Teredo architecture

2. The Teredo solution

Teredo provides IPv6 connectivity for IPv6 hosts on

private IPv4 networks with NAT by tunneling IPv6

packets over IPv4 UDP. The Teredo architecture is

illustrated in Figure 1, which consists of a Teredo server

(Figure 1 (a)), several Teredo clients (Figure 1 (b)) and

Teredo relays (Figure 1 (c)). A Teredo client provides a

Teredo tunnel interface for an IPv6 host on a private IPv4

network (Figure 1 (d)) that connects to IPv4 Internet

(Figure 1 (e)) with NAT (Figure 1 (f)). A Teredo server

assists a Teredo client to obtain IPv6 address for IPv6

Internet access. The Teredo server is stateless and only

has to handle a small volume of traffic. A Teredo relay

encapsulates IPv6 packets addressed to Teredo clients in

IPv4 UDP, and decapsulates IPv4 UDP packets sent from

the Teredo client to IPv6. Every Teredo relay advertises a

3FFE:831F::/32 IPv6 address prefix to IPv6 Internet

(Figure 1 (g)). With the advertisement, all IPv6 packets

sent from different IPv6 hosts (Figure 1 (h)) to a Teredo

client are routed to Teredo relays closest to the packet

sources, and therefore traffic load can be dynamically

shared among Teredo relays.

The NAT translates the private IPv4 address of all

pass-through packets according to an address mapping

table. Suppose that the NAT is a “full cone” NAT [8], its

address mapping table consists of the following fields

(see Figure 2).

Figure 2. Address mapping table format

As an automatic tunneling mechanism, Teredo

embeds the NAT traversal information in its 128-bit IPv6

address. A Teredo IPv6 address format consists of the

following fields (see Figure 3). The “3FFE:831F::/32”

field specifies the IPv6 address prefix of Teredo. The

“Teredo server IPv4 address” field indicates the IPv4

address of a Teredo server. The “Flag” filed indicates the

type of NAT (“full cone” or not) [8]. The “Obfuscated

mapped public UDP port” and the “Obfuscated mapped

public IPv4 address” fields indicate the public trasnport

address on NAT that is mapped from the Teredo client’s

private transport address.

The necessity for the obfuscation mechanism is that,

some “smart NAT” scans payload of pass-through IPv4

packets and translates any 32-bit substring in the payload

that matches the address to be translated in the IPv4

header (or translates any 16-bit substring in the payload

that matches the port to be translated in the TCP/UDP

header). Therefore, to prevent these “smart NATs” from

modifying the Teredo IPv6 addresses in the encapsulated

IPv4 UDP packets, obfuscation performs bitwise XOR

operation on the original value with 1 to “protect” it.

A Teredo client obtains a Teredo IPv6 address from

the Teredo server after performing a qualification

procedure. This procedure detects the NAT type and

informs the Teredo client about the public mapped

transport address. As long as Teredo clients get Teredo

IPv6 addresses, they are able to communicate with IPv6

Internet with the help of Teredo servers and Teredo relays.

The details are described in an example below.

Formatted: Bullets and Numbering

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

3

3FFE:831F::/32
Teredo server IPv4

address
Flag

Obfuscated
mapped

public UDP
port

Obfuscated mapped
public

 IPv4 address

32 bits 32 bits 16 bits 16 bits 32 bits

Figure 3. Teredo IPv6 address format

Teredo server

Teredo relay

IPv6 hostTeredo client

IPv4 Internet

UDP: 4096
IPv4: 192.168.0.2
IPv6: 3FFE:831F:0303:0303:8000:F7FF:FEFE:FEFE

NAT

UDP: 3544
IPv4: 2.2.2.2
IPv6: 2001:2:2:2::2

UDP: 3544
IPv4: 3.3.3.3
IPv6: 2001:3:3:3::3

Address mapping table on NAT

IPv6

IPv6 over IPv4 UDP

Public IPv4: 1.1.1.1
Private IPv4: 192.168.0.1

IPv6: 2001:4:4:4::4
IPv6 Internet

IPv4 private
network 1

2

3

192.168.0.2 4096 1.1.1.1 2048

Figure 4. Communication between a Teredo client and an IPv6 host

Communication between a Teredo client and an IPv6

host is illustrated in Figure 4. In this example, the IPv4

address of the Teredo server is 3.3.3.3. The NAT has two

interfaces: the WAN interface has public IPv4 address

1.1.1.1, while the LAN interface has private IPv4 address

192.168.0.1. The Teredo client has IPv4 address

192.168.0.2. Suppose that the Teredo client uses UDP

port 4096 to request a Teredo address from the Teredo

Server. When this packet arrives at the NAT, the NAT

dynamically allocates an available UDP port (2048 in

this example) for this connection, and creates an entry in

the mapping table with private transport address

192.168.0.2:4096 and public transport address

1.1.1.1:2048.

The Teredo server calculates the Teredo IPv6 address

of this client by determining the values of each field:

� Prefix (32 bits) = 0x3FFE831F

� Teredo server IPv4 address (32 bits) = 3.3.3.3 =

0x03030303

� Flag (16 bits) = 0x8000 (“full cone” NAT)

� Obfuscated mapped public UDP port (16 bits) = 2048

�0xFFFF = 0x0800�0xFFFF = 0xF7FF

� Obfuscated mapped public IPv4 address (32 bits) =

1.1.1.1 � 0xFFFFFFFF = 0x01010101 �
0xFFFFFFFF = 0xFEFEFEFE

Therefore, the Teredo IPv6 address assigned by the

Teredo Server to this Teredo client is

3FFE:831F:0303:0303:8000:F7FF:FEFE:FEFE.

Suppose that an IPv6 packet is delivered from an

IPv6 host to a Teredo client. The detailed steps are

described as follows.

Step 1. The IPv6 packet is sent from the IPv6 host to

the Teredo relay.

Step 2. The Teredo relay encapsulates the IPv6 packet

in IPv4 UDP. The IPv4 address information and UDP

port information of this packet are determined based on

Teredo IPv6 address as follows. The source IPv4 address

is the IPv4 address of the Teredo relay (2.2.2.2), and the

destination IPv4 address is the “original value” derived

from the “Obfuscated mapped public IPv4 address” field

of destination IPv6 address (0xFEFEFEFE �
0xFFFFFFFF = 0x01010101 = 1.1.1.1). The source UDP

port is 3544, and the destination UDP port is the “original

value” derived from the “Obfuscated mapped public

UDP port” field of destination IPv6 address (0xF7FF�
0xFFFF = 0x0800 = 2048). The Teredo relay sends the

IPv4 UDP packet to the NAT (1.1.1.1) through IPv4

Internet.

Step 3. After the NAT receives this IPv4 UDP packet, it

translates the destination IPv4 address and destination

UDP port from 1.1.1.1:2048 to 192.168.0.2:4096

according to the address mapping table, and then sends it

to the Teredo client.

Upon reception of the packet, the Teredo client

.1

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

4

decapsulates the IPv4 UDP packet and obtains the IPv6

packet sent from the IPv6 host.

For scenarios of traversing other types of NATs

(restricted cone and port-restricted cone) and scenarios of

packets transmission from Teredo clients to public IPv6

hosts, please refer to the Teredo draft [7] for details.

2.1. Linux-based Teredo

This subsection describes a Teredo implementation

on Linux, namely, NICI-Teredo [9]. During its

development in 2003, an independent implementation for

FreeBSD was also developed by 6WIND [10], and in

2004, Miredo-Teredo was also developed on Solaris,

FreeBSD, and Linux [11].

NICI-Teredo supports Teredo server and Teredo relay

functions that can be installed on a single host or

independently on distributed hosts. The Teredo server

function is developed in a user level daemon. A user level

daemon is sufficient since a Teredo server is stateless

with small volume of traffic to handle. The Teredo relay

function is developed with a combination of a user level

program and a kernel level module. A user level program

deals with NICI-Teredo relay configuration, while a

kernel level module provides a high speed IPv6 packet

relaying function. Detailed software architectures of

NICI-Teredo are described as follows.

physical interface
module

physical interface
module

physical interface physical interface

IPv4 Internet IPv6 Internet

Raw ethernet
socket
(SOCK_RAW)

UDP socket
(SOCK_DGRAM)

Kernel level

User level

ICMPv6 relay

function

qualification

Function
packet

processor

NICI-Teredo server

dispatcher

(a)

(b) (c)

1 2

3

4

Figure 5. Architecture of NICI-Teredo server
NICI-Teredo server (Figure 5 (a)) creates two IPv4

Internet connected UDP sockets (Figure 5 (b)) and an

IPv6 Internet connected raw ethernet socket (Figure 5 (c))

on execution. These sockets allow this daemon to receive

and transmit IPv6 packets. NICI-Teredo server consists

of four components. The “packet processor” (Figure 5 1)

handles IPv6 packets encapsulation and IPv4 UDP

packets decapsulation. The “dispatcher” (Figure 5 2)

checks the IPv6 packets delivered from the “packet

processor” and dispatches them to the proper functions.

The “qualification function” (Figure 5 3) provides

capability to perform qualification procedure for Teredo

clients. It helps the Teredo client to discover the type of

NAT and the mappped public transport address. The

“ICMPv6 relay function” serves as a message relay for

Teredo clients to find a closest Teredo relay. Detailed

operations of these functions can be found in the draft

and are not elaborated in this paper.

physical interface
module

physical interface
module

IPv4 forwarding IPv6 forwarding

physical interface physical interface

IPv4 Internet IPv6 Internet

Kernel level

User level

Advertising
3FFE:831F::/32

Advertising
3FFE:831F::/32

relay module

encapsulation

function

decapsulation

function

(a)

(c)

prefix advertisement
module

routing management
module

NICI-Teredo Relay

3

2

1

(b)

configuring

Figure 6. Architecture of NICI-Teredo relay

NICI-Teredo relay (Figure 6 (a)) provides the IPv6

packet relay function with the help of IPv6 and IPv4

forwarding (Figure 6 (b) and (c)) mechanisms in Linux

kernel. This Teredo relay consists of three modules. The

“relay module” (Figure 6 1) provides IPv6 packets

encapsulation and decapsulation functions. It

encapsulates the IPv6 packets forwarded from IPv6

routing mechanism in IPv4 UDP, and then passes them to

IPv4 routing mechanism where they will be delivered to

the Teredo clients. The encapsulated IPv6 packets are

also handled by this module. It decapsulates these

packets to IPv6, and then passes them to IPv6 routing

mechanism where they will be delivered to normal IPv6

hosts. The “routing management module” (Figure 6 2)

manages the packet forwarding plans in kernel. It

configures the IPv6 forwarding plan to forward IPv6

packets which are destined to Teredo clients (destination

IPv6 address matches 3FFE:831F::/32 prefix) to the

“relay module”, and configures the IPv4 forwarding plan

to forward IPv4 UDP packets sent from Teredo clients to

the “relay module”. The “prefix advertisement module”

(Figure 6 3) advertises the 3FFE:831F::/32 IPv6 address

prefix to IPv6 Internet. This advertisement helps IPv6

packets destined to Teredo clients being routed to the

closest Teredo relay in IPv6 networks.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

5

UDP:4096
IPv4:192.168.0.2
(IPv6:3FFE:831F:0303:0303:8000:F7FF:FEFE:FEFE)

IPv6:2001:4:4:4::4

IPv6 host / Teredo client

NIC1 NIC2

NAT

IPv4:1.1.1.1

NIC1 NIC2

IPv4:192.168.0.1

Teredo relay

NIC1 NIC2

UDP:3544
IPv4:2.2.2.2 IPv6:2001:2:2:2::2

(a) (b) (c)

Figure 7. Measurement environment
In comparison with other Linux-based Teredo relay

[10,11], the packet relay function of NICI-Teredo relay is

developed in a kernel level module while that of

Miredo-Teredo relay is developed in a user level program.

The packet processing latency of NICI-Teredo relay is

thus shorter because there are no packet copying

operations between kernel level and user level. This will

be elaborated in next section. Moreover, NICI-Teredo

relay provides a simple way for installation though it

involves kernel hacking. Since this module is dynamic

loadable, the installation does not need to modify or

re-compile the Linux kernel.

3. Performance measurement

Teredo relay is the bottleneck component in Teredo

mechanism which will handle large volume of network

traffic. In this section, we measure the performance of

different implementations of Teredo relays. The output

measurement is “packet processing latency”, which

includes both packet encapsulation latency (from a

public IPv6 host to a private Teredo client) and packet

decapsulation latency (from a private Teredo client to a

public IPv6 host).

The measurement environment consists of three hosts

(see Figure 7). This environment follows the Teredo

architecture in Figure 1. According to the testing

architecture in RFC 2544 [12], we use a tester (Figure 7

(a)) which configures both the Teredo client function and

the IPv6 host on it. This IPv6 host runs on Redhat Linux

9 with an IPv4 UDP daemon to simulate the Teredo client

function. The NAT (Figure 7 (b)) runs on Redhat Linux 9

with address mapping rule set by iptables. The DUT

(device under test) is the Teredo relay (Figure 7 (c)) in

three different versions. It runs on Redhat Linux 9 for

NICI-Teredo relay measurement and Miredo-Teredo

relay measurement, and runs on FreeBSD 4.9 for

6WIND-Teredo relay measurement. The hardware

specification of these hosts is the same, which is a

personal computer (PC) with 1800+ AMD Athlon CPU,

256 MB SDRAM and two RealTek 8139 100BaseTx

Ethernet cards.

In the measurement, a C program with pcap library

[13] is used for catching the packet receiving and

delivering timestamps. Pcap is a packet capturing library

supported on multiple operating systems. The tests

follow the packet sending rule as the round-trip time

measurement utility ping. That is, we send one packet per

second to the Teredo relay for encapsulation or

decapsulation, and measure the packet processing latency.

Tests are conducted with three different packet sizes (64

bytes, 512 bytes, 1280 bytes), respectively. Each test

generates 10,000 packets.

Figure 8 shows the packet encapsulation latency

histograms of the three Teredo relays (payload size is

1280 bytes, the IPv6 MTU of Teredo). The latency of the

NICI-Teredo relay clusters around 7µs~9µs and

11µs~13µs; the latency of the 6WIND-Teredo relay is

around 11µs~15µs; the latency of Miredo-Teredo relay

clusters is around 28µs~32µs and 37µs~40µs. The

1280-byte packet decapsulation latency histogram is

similar to Figure 8, and the average packets processing

latency of the three Teredo relays are listed in Table 1.

With different packet sizes, the encapsulation and

decapsulation latency histograms of NICI-Teredo relay

and 6WIND-Teredo relay are similar to the histogram in

Figure 8, while those of Miredo-Teredo relay takes

longer delay when the packet size grows bigger.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Delay(µs)

P
er
ce
n
ta
g
e(
%

NICI-Teredo

6WIND-Teredo

Miredo-Teredo

Figure 8. Encapsulation latency histograms of

Teredo relay (1280 bytes)

Formatted: Bullets and Numbering

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

6

Table 1. Average processing latency
Teredo

relay

Avg. latency of

encapsulation (µs)

Avg. latency of

decapsulation (µs)

NICI 7.82 9.03

6WIND 13.53 14.63

Miredo 30.46 33.14

4. Conclusions & Future Work

This paper introduces the NAT traversal problem in

IPv6 deployment process in Taiwan. We developed

NICI-Teredo with a pretty good performance to solve the

NAT problem. NICI-Teredo is also the first Teredo

implementation on Linux. As a NAT traversable

automatic tunneling mechanism, Teredo greatly

simplifies the IPv6 deployment process and facilitates

the IPv6 transition stage.

Although Teredo is a useful mechanism, it does not

work for all kinds of NAT devices. According to the rules

for port mapping and access control, there are different

types of NATs. As described in RFC 3489, the four major

types are full cone NAT, restricted cone NAT, port

restricted cone NAT, and symmetric NAT. Although

Teredo can successfully traverse the former three types of

NATs, it fails in traversing symmetric NATs. Whether it

is possible to enhance the protocol design of Teredo so

that it could traverse symmetric NATs, is still an open

problem for further research.

Acknowledgement

This project is partially sponsored by NICI IPv6 R&D

Division, Taiwan.

References

[1] R. Gilligan and E. Nordmark, “Transition Mechanisms for

IPv6 Hosts and Routers”, RFC 2893, August 2000.

[2] B. Carpenter and K. Moore, “Connection of IPv6 Domains

via IPv4 Clouds”, RFC 3056, February 2001.

[3] A. Durand, P. Fasano, I. Guardini and D. Lento, “IPv6

Tunnel Broker”, RFC 3053, January 2001.

[4] P. Srisuresh and M. Holdrege, “IP Network Address

Translator (NAT) Terminology and Considerations”, RFC

2663, August 1999.

[5] H. Levkowetz and S. Vaarala, “Mobile IP Traversal of

Network Address Translation (NAT) Devices”, RFC 3519,

April 2003.

[6] M. Liu , X. Wu, Y. Cai, M. Jin and D. Li, “Tunneling IPv6

with private IPv4 addresses through NAT devices”, Internet

Draft, draft-liumin-v6ops-silkroad-01.txt (Work In Progress),

May 2004.

[7] C. Huitema, “Teredo: Tunneling IPv6 over UDP through

NATs”, Internet draft, draft-huitema-v6ops-teredo-02.txt

(Work In Progress), March 2004.

[8] J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy,

“STUN - Simple Traversal of User Datagram Protocol (UDP)

Through Network Address Translators (NATs)”, RFC 3489,

March 2003

[9] S.M. Huang and Q. Wu, “Implementation of Teredo –

Tunneling IPv6 through NATs”, Technical Report for

National Information and Communication Initiative (NICI)

IPv6 R&D Division, Republic of China, 2003.

[10] 6WIND-Teredo, http://www-rp.lip6.fr/teredo/

[11] Miredo-Teredo,

http://www.simphalempin.com/dev/miredo/

[12] S. Bradner and J. McQuaid, “Benchmarking Methodology

for Network Interconnect Devices”, RFC 2544, March

1999.

[13] Pcap library, http://www.tcpdump.org/

Formatted: Bullets and Numbering

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

