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Hamiltonian Path Completion Problem

On unweighted graphs:

Given G = (V, Ey), find an augmenting edge set £’ with minimum
cardinality such that G’ = (V, Eqg U E’) has a Hamiltonian path.

1. NP-complete

2. P if (G is a tree, a forest, an interval graph, a circular-arc

graph, a bipartite permutation graph, etc.




Weighted Hamiltonian Path Completion Problem

Given a complete graph G = (V, E), w: E — R", Eg C E, find an
augment E’ C E such that G' = (V, Eg U E') has a Hamiltonian

path and ) ., w(e) is minimized.

We shall restrict our discussion on the cases that Ey constitutes a

tree.




Approximation

e It is believed that there exists no polynomial time algorithm
that is able to find the optimum solution for any NP-complete
problem.

e If we relax our goal to find an "nearly optimal” solution
instead of an optimal one, polynomial time algorithms may
exist for some NP-complete problems.




Performance Ratio

Definition: The performance ratio of an approximation algorithm

of problem A is «, if for all instance I of problem A,

APX 4(I)
OPTA(I)

<
e For minimum node cover problem, there exists an
approximation algorithm with performance ratio 2.

e For TSP, no approximation algorithm with constant
performance ratio has been found.




Main Result

Weighted Hamiltonian path completion problem

Cannot be approximated within any constant ratio.

NP-hard when the given edge set constitutes a tree
and edge weights are restricted to be either 1 or 2.

A 2-approximate algorithm for the above problem.
No FPTAS for this problem.
A 1.5-approximate algorithm on 1-stars.

A 1.5-approximate algorithm on k-stars.



Theorem 1 For any o > 1, if there exists an a-approximate
algorithm for HPCT, then NP = P.
Proof. Reduction from the Hamiltonian path problem.

V' =V U{vg,nt1}
E'={(vi,v;) |0<i<n+1,0<j<n+1andi#j}
Eo = {(vo,v;) |1 <i<n+1}
1 ifee F,
a|E|(n —1) otherwise.

For each e € E'| w(e) =




If G has a Hamiltonian path, then G’ has an augment with n — 1

edges, and each of these edges has weight 1. (For K1 41, n — 1

edges are optimal.)

Suppose that we have an a-approximate algorithm A. If the
optimal augment for G’ has cost n — 1, then A cannot generate a
solution containing any edge with weight a|FE|(n — 1). Otherwise,

alEl(n—1)
n—1

= a|E| > «

Therefore, the solution generated by A will only contain edges with
weight 1, and thus have total weight less than or equal to |E|.




If A generates an augment with cost less than or equal to |E|, then

obviously it does not contain any edge with cost a|F|(n —1). In

other words, all these edges are contained in £. Since such a subset
in F constitutes a Hamiltonian path, G has a Hamiltonian path.




(G has a Hamiltonian path if and only if A generates an augment

with cost less than or equal to |E| for G'.

Thus, if HPCT has a polynomial-time a-approximate algorithm,
then NP=P.

When the edge weights are restricted to be either 1 or 2, this
problem remains to be NP-hard (Section 3).
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A 2-Approximate Algorithm for (1,2)-HPCT
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Add edges to concatenate these paths.
e.g. £ ={(4,3),(3,7),(8,9),(9,10)}




Algorithm 1

Choose any internal node to be the root of the tree.

If there is a leaf v, whose parent node u has only one child,
then apply the Type 1 merging to merge u and v. Repeat this
step until there is no such node.

Choose a deepest leaf v. If its parent node u has k£ children
where k > 2, then apply the Type 2 merging and disconnect all

edges incident to wu.
If there is any edge left, then goto 2.

To obtain a Hamiltonian path, add edges to concatenate the

paths corresponding to the remaining isolated vertices.




Let ¢ denote the minimum number of edges to be inserted to make
a given tree Hamiltonian. If G is unweighted then |Es| = ¢

[Goodman 74].

|E2| = ¢ < |E5

w(B2) < 2¢ <2 x |E;5|

w(




The ratio 2 is tight.

(a) An approximate augment with n edges, whose cost is 2n. (b)
An optimal augment with cost n + 1.




Theorem 3 If (1,2)-HPCT has an FPTAS, then NP=P.

Proof. Suppose that (1,2)-HPCT has an FPTAS; i.e., Ve > 0,
there exists a (1 + €)-approximation algorithm for the (1,2)-HPCT
problem such that its time complexity is polynomial in the size of

the input and W

Then for G = (V, E), choose € = ﬂ

Wape 1
<14+ — = w < Wopt +
\Eoﬁﬁ = M_m; apr =~ Wopt
Notice that the optimal augment E* will never contain any edge in
Ey, i.e., |E*| < |E|. Since the weight on each edge is either 1 or 2,

\So@ﬂ _ \EANw*V < M_Mm_*_ <1
20E|  20E| T 2(E]

Therefore, waps — Wopt < 1

Wapr — Wopt = 0




The approximation algorithm always generates an optimal solution
in polynomial time. This contradicts with that (1,2)-HPCT is

NP-hard as we proved in Section 3.




A 1.5-Approximate Algorithm for (1,2)-Hamiltonian Path
Completion Problem on k-Stars

A 4-Star




Shrink

(b)

The path (v, vs,v3) is shrunk to a vertex vy.
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Suppose the optimal augment is {(vy4, v5), (v4, v6)} which yields a
Hamiltonian path (v3, vy, v, vs, v4,v6). Then by shrinking the path

(vs, v1,v2,v5) we obtain G’, in which a Hamiltonian path has 2

edges.




Suppose the optimal augment is {(v4,vs5)}, which yields a
Hamiltonian path (v3, vy, v4,vs,v2,v6). Then by shrinking the two

paths (vs,v1,v4) and (vs, ve, vg), we obtain G’, in which a

Hamiltonian path has 1 edge.

The number of edges in G’ is the same as the cardinality of the

augment in G.




On the shrunk graph G’, we apply the minimum-weight

maximal-matching algorithm [Lawler 76].

Map back to G.

Add edges to catenate these paths serially, say, (vs,v4).

V1




Suppose the optimal augment contains n; edges with weight 1, no

edges with weight 2.

Then the minimum-weight maximal-matching in G’ will contain at

least % edges with weight 1 (Lemma 2).

Even in the worst case that the remaining (n; +ng — %) edges

chosen by our algorithm are all with weight 2, the total cost will be

WS\H + MSM.
WS\H |_|M§m 3
2

<
ny +2ng




e This is the result on GG’, which is obtained by shrinking the
path(s) contained in the optimal Hamiltonian path in G.

e But, given G, how do we know which paths are to be shrunk?

e Trying all possibilities and choose the minimum one among
them will certainly work, but this lead to an exponential

algorithm.




Lemma 3 If H is a Hamiltonian path in G, and Ey constitutes a

k-star, then H contains at most 2k edges in Ej.

Cl+C+Cy 4 -+ C% = O(n?*)
G v




Algorithm 2

Input: A weighted complete graph G = (V, E), where the weight
on each edge is either 1 or 2, and an edge set Ey that constitutes a

spanning tree on G, where the spanning tree has k internal nodes.
Output: An augment Ey C FE such that G' = (V, Eqg U E5) has a
Hamiltonian path.

Goal: Minimize the cost of Ey, i.e., > g w(e).

Steps:
1. W « o0, AUG « 0.

2. For all subsets of Ey with no more than 2k edges do

If the subset has 3 or more edges incident to the same vertex Then
/* do nothing */

Else
Suppose the subset consists of vertex-disjoint paths Pi, Ps, - -, P;.

shrink paths P, P», - -, P; to obtain Qﬁﬁfﬁmv:.“ﬁs@.

Find a minimum-weight maximal-matching MM on Gyp, p,,...,p;}-
Map these matching edges to paths in G.




Let M M be mapped to M M.

Add edges E’ to concatenate these paths serially
to form a Hamiltonian path.

If the cost of E/ U MM’ is smaller than W Then
W+ w(E'"UMM')
AUG <~ E'"UMM’

End If

End If
Next

3. Report AUG as the solution and stop.

Time complexity: O(n2F+3).

We obtain a polynomial-time 1.5-approximate algorithm for the
Hamiltonian path completion problem on k-stars.




Conclusion

Weighted Hamiltonian path completion problem

Cannot be approximated within any constant ratio.

NP-hard when the given edge set constitutes a tree
and edge weights are restricted to be either 1 or 2.

A 2-approximate algorithm for the above problem.
No FPTAS for this problem.
A 1.5-approximate algorithm on 1-stars.

A 1.5-approximate algorithm on k-stars.



Future Research

(1,2)-Hamiltonian Path Completion Problem

For k-stars, 1.5-approximate - optimal or lower ratio?
For trees, 2-approximate - optimal or lower ratio?
For general graphs with weights 1 or 2

For (a,b)-Hamiltonian path completion problem,
what ratio can we obtain?




