Hamiltonian Path Completion Problem on a Tree An Approximation Algorithm for the Weighted

Author: Aaron Solomon

Dr. C. L. Lu

Prof. R. C. T. Lee

National Center for High-Performance Computing Hsinchu, Taiwan

December, 2000

Graph Traversing

Euler 1736

Hamilton 1859

Hamiltonian Path Completion Problem

On unweighted graphs:

cardinality such that $G' = (V, E_0 \cup E')$ has a Hamiltonian path. Given $G = (V, E_0)$, find an augmenting edge set E' with minimum

- 1. NP-complete
- 2. P if G is a tree, a forest, an interval graph, a circular-arc graph, a bipartite permutation graph, etc.

Weighted Hamiltonian Path Completion Problem

path and $\sum_{e \in E'} w(e)$ is minimized. augment $E' \subseteq E$ such that $G' = (V, E_0 \cup E')$ has a Hamiltonian Given a complete graph $G = (V, E), w : E \to R^+, E_0 \subseteq E$, find an

We shall restrict our discussion on the cases that E_0 constitutes a

Approximation

- It is believed that there exists no polynomial time algorithm problem. that is able to find the optimum solution for any NP-complete
- If we relax our goal to find an "nearly optimal" solution exist for some NP-complete problems instead of an optimal one, polynomial time algorithms may

Performance Ratio

of problem A is α , if for all instance I of problem A, **Definition:** The performance ratio of an approximation algorithm

$$\frac{APX_A(I)}{OPT_A(I)} \le \alpha$$

- For minimum node cover problem, there exists an approximation algorithm with performance ratio 2.
- For TSP, no approximation algorithm with constant performance ratio has been found.

Main Result

Weighted Hamiltonian path completion problem

- Cannot be approximated within any constant ratio.
- NP-hard when the given edge set constitutes a tree and edge weights are restricted to be either 1 or 2.
- A 2-approximate algorithm for the above problem.
- No FPTAS for this problem.
- A 1.5-approximate algorithm on 1-stars
- A 1.5-approximate algorithm on k-stars.

algorithm for HPCT, then NP = P. **Theorem 1** For any $\alpha > 1$, if there exists an α -approximate

Proof. Reduction from the Hamiltonian path problem.

$$V' = V \cup \{v_0, v_{n+1}\}$$

$$E' = \{(v_i, v_j) \mid 0 \le i \le n+1, 0 \le j \le n+1 \text{ and } i \ne j\}$$

$$E_0 = \{(v_0, v_i) \mid 1 \le i \le n+1\}$$

$$\text{For each } e \in E', \ w(e) = \begin{cases} 1 & \text{if } e \in E, \\ \alpha |E|(n-1) & \text{otherwise.} \end{cases}$$

edges, and each of these edges has weight 1. (For $K_{1,n+1}$, n-1edges are optimal.) If G has a Hamiltonian path, then G' has an augment with n-1

solution containing any edge with weight $\alpha |E|(n-1)$. Otherwise, optimal augment for G' has cost n-1, then A cannot generate a Suppose that we have an α -approximate algorithm \mathcal{A} . If the

$$\frac{\alpha|E|(n-1)}{n-1} = \alpha|E| > \alpha$$

Therefore, the solution generated by \mathcal{A} will only contain edges with weight 1, and thus have total weight less than or equal to |E|.

in E constitutes a Hamiltonian path, G has a Hamiltonian path. other words, all these edges are contained in E. Since such a subset obviously it does not contain any edge with cost $\alpha |E|(n-1)$. In If \mathcal{A} generates an augment with cost less than or equal to |E|, then

with cost less than or equal to |E| for G'. G has a Hamiltonian path if and only if \mathcal{A} generates an augment

then NP=P. Thus, if HPCT has a polynomial-time α -approximate algorithm,

problem remains to be NP-hard (Section 3). When the edge weights are restricted to be either 1 or 2, this

A 2-Approximate Algorithm for (1,2)-HPCT

- A: (11,6,2,1,4)
- B: (3)
- C: (7,5,8)
- D: (9)
- E: (10)

Add edges to concatenate these paths.

e.g.
$$E_2 = \{(4,3), (3,7), (8,9), (9,10)\}$$

Algorithm 1

- 1. Choose any internal node to be the root of the tree.
- 2. If there is a leaf v, whose parent node u has only one child, then apply the Type 1 merging to merge u and v. Repeat this step until there is no such node.
- 3. Choose a deepest leaf v. If its parent node u has k children edges incident to u. where $k \geq 2$, then apply the Type 2 merging and disconnect all
- 4. If there is any edge left, then goto 2.
- 5. To obtain a Hamiltonian path, add edges to concatenate the paths corresponding to the remaining isolated vertices.

[Goodman 74]. a given tree Hamiltonian. If G is unweighted then $|E_2| = \zeta$ Let ζ denote the minimum number of edges to be inserted to make

$$|E_2| = \zeta \le |E_2^*|$$

$$w(E_2) \le 2\zeta \le 2 \times |E_2^*|$$

$$w(E_2^*) \ge 1 \times |E_2^*|$$

$$\Rightarrow \frac{w_{apx}}{w_{opt}} = \frac{w(E_2)}{w(E_2^*)} \le \frac{2|E_2^*|}{|E_2^*|} = 2$$

The ratio 2 is tight.

(a) An approximate augment with n edges, whose cost is 2n. (b) An optimal augment with cost n+1.

problem such that its time complexity is polynomial in the size of there exists a $(1 + \epsilon)$ -approximation algorithm for the (1,2)-HPCT the input and $\frac{1}{\epsilon}$. **Proof.** Suppose that (1,2)-HPCT has an FPTAS, i.e., $\forall \epsilon > 0$, **Theorem 3** If (1,2)-HPCT has an FPTAS, then NP=P.

Then for G = (V, E), choose $\epsilon = \frac{1}{2|E|}$.

$$\frac{w_{apx}}{w_{opt}} \le 1 + \frac{1}{2|E|} \Rightarrow w_{apx} \le w_{opt} + \frac{w_{opt}}{2|E|} \Rightarrow w_{apx} - w_{opt} \le \frac{w_{opt}}{2|E|}.$$

Notice that the optimal augment E^* will never contain any edge in E_0 , i.e., $|E^*| < |E|$. Since the weight on each edge is either 1 or 2,

$$\frac{w_{opt}}{2|E|} = \frac{w(E^*)}{2|E|} \le \frac{2|E^*|}{2|E|} < 1.$$

Therefore,
$$w_{apx} - w_{opt} < 1$$

$$w_{apx} - w_{opt} = 0$$

The approximation algorithm always generates an optimal solution in polynomial time. This contradicts with that (1,2)-HPCT is NP-hard as we proved in Section 3.	
--	--

A 1.5-Approximate Algorithm for (1,2)-Hamiltonian Path Completion Problem on k-Stars

Shrink

The path (v_1, v_2, v_3) is shrunk to a vertex v_1 .

(a)

Э

v_5	v_4	v_3	v_2	v_1	
				8	v_1
			8	—	v_2
		8	1	2	v_3
	8	2	1	<u> </u>	v_4
8	2	—	\vdash	2	v_5

v_5	v_4	v_1	
		8	v_1
	8	1	v_4
8	2	<u> </u>	v_5

edges.

paths (v_3, v_1, v_4) and (v_5, v_2, v_6) , we obtain G', in which a Suppose the optimal augment is $\{(v_4, v_5)\}$, which yields a Hamiltonian path $(v_3, v_1, v_4, v_5, v_2, v_6)$. Then by shrinking the two Hamiltonian path has 1 edge.

augment in G. The number of edges in G' is the same as the cardinality of the

- 1. On the shrunk graph G', we apply the minimum-weight maximal-matching algorithm [Lawler 76].
- 2. Map back to G.
- 3. Add edges to catenate these paths serially, say, (v_5, v_4) .

edges with weight 2. Suppose the optimal augment contains n_1 edges with weight 1, n_2

least $\frac{n_1}{2}$ edges with weight 1 (Lemma 2). Then the minimum-weight maximal-matching in G' will contain at

 $\frac{3}{2}n_1 + 2n_2$. chosen by our algorithm are all with weight 2, the total cost will be Even in the worst case that the remaining $(n_1 + n_2 - \frac{n_1}{2})$ edges $\frac{\frac{3}{2}n_1 + 2n_2}{n_1 + 2n_2} \le \frac{3}{2}$

$$\frac{\frac{3}{2}n_1 + 2n_2}{n_1 + 2n_2} \le \frac{3}{2}$$

- This is the result on G', which is obtained by shrinking the path(s) contained in the optimal Hamiltonian path in G.
- But, given G, how do we know which paths are to be shrunk?
- Trying all possibilities and choose the minimum one among algorithm them will certainly work, but this lead to an exponential

k-star, then H contains at most 2k edges in E_0 . **Lemma 3** If H is a Hamiltonian path in G, and E_0 constitutes a

(a)

<u>б</u>

Algorithm 2

spanning tree on G, where the spanning tree has k internal nodes. on each edge is either 1 or 2, and an edge set E_0 that constitutes a **Input:** A weighted complete graph G = (V, E), where the weight **Output:** An augment $E_2 \subseteq E$ such that $G' = (V, E_0 \cup E_2)$ has a

Goal: Minimize the cost of E_2 , i.e., $\sum_{e \in E_2} w(e)$.

Hamiltonian path

Steps:

- 1. $W \leftarrow \infty$, $AUG \leftarrow \emptyset$.
- 2. For all subsets of E_0 with no more than 2k edges do If the subset has 3 or more edges incident to the same vertex Then /* do nothing */

Else

Find a minimum-weight maximal-matching MM on $G_{\{P_1,P_2,\cdots,P_i\}}$. Suppose the subset consists of vertex-disjoint paths P_1, P_2, \dots, P_i . Map these matching edges to paths in Gshrink paths P_1, P_2, \dots, P_i to obtain $G_{\{P_1, P_2, \dots, P_i\}}$.

Let MM be mapped to MM'.

Add edges E' to concatenate these paths serially to form a Hamiltonian path.

If the cost of $E' \cup MM'$ is smaller than W Then

$$W \leftarrow w(E' \cup MM')$$
$$AUG \leftarrow E' \cup MM'$$

End If

End If

Next

3. Report AUG as the solution and stop.

Time complexity: $O(n^{2k+3})$.

Hamiltonian path completion problem on k-stars We obtain a polynomial-time 1.5-approximate algorithm for the

Conclusion

Weighted Hamiltonian path completion problem

- Cannot be approximated within any constant ratio.
- NP-hard when the given edge set constitutes a tree and edge weights are restricted to be either 1 or 2.
- A 2-approximate algorithm for the above problem.
- No FPTAS for this problem.
- A 1.5-approximate algorithm on 1-stars
- A 1.5-approximate algorithm on k-stars

Future Research

(1,2)-Hamiltonian Path Completion Problem

- For k-stars, 1.5-approximate optimal or lower ratio?
- For trees, 2-approximate optimal or lower ratio?
- For general graphs with weights 1 or 2
- For (a, b)-Hamiltonian path completion problem, what ratio can we obtain?