
199A Survey of NAT Behavior Discovery in VoIP Applications

A Survey of NAT Behavior Discovery in VoIP Applications
Shiang-Ming Hunag1, Quincy Wu2

1Department of Computer Science, National Chiao Tung University, Taiwan
2Graduate Institute of Communication Engineering, National Chi Nan University, Taiwan

smhuang@cs.nctu.edu.tw, solomon@ipv6.club.tw

Abstract

Because of the foreseeing depletion of Internet 
Protocol (IP) addresses, Network Address Translation 
(NAT) is ubiquitously deployed to allow hosts to connect 
to the Internet through a single shared public IP address, 
which is a popular approach in deploying wireless local 
area network (WLAN). Although NAT proves to work well 
with traditional client/server applications, its existence 
and non-standard behaviors are the major problem which 
cripples voice over IP (VoIP) applications. In addition to 
some efforts which attempt to devise complicated protocols 
to tackle all NAT varieties, there are also efforts in Internet 
communities trying to standardize the behaviors of NAT. 
Therefore, it becomes crucial for a network device to 
discover the existence of NAT in its subnet and to determine 
the NAT behaviors, so that it can choose the optimal NAT 
traversal mechanisms to apply. In this paper, we surveyed 
the divergent NAT behaviors and then proposed a simplified 
NAT behavior discovery approach which is more suitable 
for VoIP applications. The proposed approach can reduce 
the call establishment time of VoIP applications, which is 
useful in scenarios where VoIP devices are administrated 
within a specific domain, e.g., 3G cellular networks.
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1   Introduction

Internet Protocol (IP) address is a resource which is 
required by every device to connect to the Internet. Due 
to IP version 4 (IPv4) address depletion in the 1990s, 
Network Address Translation (NAT) [1] was proposed to 
allow a group of devices in an internal private network 
to hide behind a single server and to access the external 
Internet using a shared public IPv4 address. NAT was 
proposed to be a short-term solution, as the original NAT 
specification [2] described NAT to be: “If nothing else, this 
solution can serve to provide temporarily relief while other, 
more complex and far-reaching solutions are worked out”. 
However, nowadays the deployment of NAT has reached an 
almost ubiquitous situation [3-4], although the “far-reaching 

solution” of the original NAT specification -- IP version 6 
(IPv6) [5] has already been developed for a few years.

NAT translates IPv4 addresses and transport port 
numbers of the pass-through packets between private 
and public address realms. This operation invalidates 
normal behaviors of many protocols, especially those 
for voice over IP (VoIP) applications [6-9]. Many VoIP 
protocols, such as Session Initiation Protocol (SIP) [10] 
and Real-Time Streaming Protocol (RTSP) [11], are 
problematic when they interwork with NAT because many 
communication parameters carried within their application 
layer messages are IPv4 addresses and transport port 
numbers of the endpoints. Since these parameters are used 
for setting up end-to-end connections between endpoints, 
in case one endpoint is located in a private network behind 
NAT, the IPv4 addresses carried in these messages for that 
endpoint would be private and therefore not routable from 
other endpoints in public networks. Figure 1(a) illustrates a 
scenario where a SIP client and a SIP server are located in 
two different subnets separated by a NAT device. When the 
client sends a SIP message to the server, the NAT assigns 
a mapped address to the private address of the client and 
creates a binding between the two addresses. This binding 
is stored in the address mapping table of the NAT, and the 
NAT translates packets according to this mapping table. 
Figure 1(b) shows an example of the SIP message sent 
from the client to the server. In this message, fields used 
for setting up connections are shown in bold text. We can 
observe that many parameters carried in this message are 
not routable because they are the private address which the 
client detects from its local network interface.

The address binding and the translation mechanism 
are the basis of NAT. They were documented in the NAT 
specifications [1-2] when it was proposed. However, these 
documents did not specify the rules for address binding and 
the principle for subsequent packet handling. Therefore, 
each vendor developed their NAT products based on their 
own understanding about NAT, and this results in divergent 
NAT behaviors in handling the pass-through packets, 
especially inbound packets (i.e., packets sent from the 
public realm to the private realm of a NAT) [12-16].

The divergent behaviors of NAT devices make NAT 
traversal difficult. It has been shown that a NAT traversal 
solution which is a good choice in one scenario may 
behave poorly in many other scenarios [17]. To reduce 
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the effort required for endpoints to traverse NAT, Internet 
Engineering Task Force (IETF) BEHAVE Working Group 
proposed NAT behavioral requirements to unify the NAT 
behaviors [18-21]. Moreover, it also proposed a NAT 
behavior discovery approach for endpoints to detect the 
behaviors of the NAT in its current network [13].

NAT
IPv4: 140.113.1.2

SIP Server
IPv4: 140.113.1.1

SIP client
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.1:5060

SIP message SIP message

(a) NAT and Its Address Mapping Table

INVITE sip:callee@sip.ipv6.club.tw SIP/2.0

Via: SIP/2.0/UDP 

192.168.117.214:5060;branch=z9hG4bK6608;rport 

From: <sip:caller@sip.ipv6.club.tw>;tag=8653 

To: <sip:callee@sip.ipv6.club.tw> 

Call-ID: 7557@192.168.117.214 

CSeq: 1 INVITE 

Contact: <sip:caller@192.168.117.214:5060>

Content-Type: application/sdp 

Content-Length: 144 

v=0

o=userX 20000001 20000001 IN IP4 192.168.117.214 

s=A call 

c=IN IP4 192.168.117.214

t=0 0 

m=audio 9000 RTP/AVP 0 

a=rtpmap:0 PCMU/8000

(b) The SIP Message Sent from a Client behind a NAT Device
Figure 1 Problematic SIP Messages under NAT

Prior to the NAT behavior discovery approach 
proposed by the IETF BEHAVE Working Group, there 
had been proposals from RFC 3489 [22], and Vovida [23] 
which also aim to discover the NAT behaviors. In this 
article, we describe these approaches and discuss their 
applicability. Furthermore, we propose a simplified NAT 
behavior discovery approach which is more suitable for 
VoIP applications.

2   NAT Traversal Solutions

NAT invalidates normal behaviors of many VoIP 
protocols. Several solutions have been proposed to mitigate 
this problem [3][17][22][24-33]. Among them, Simple 
Traversal of User Datagram Protocol (UDP) through NAT 
(STUN) [22] is a technique widely adopted in existing SIP 
devices. It is a UNilateral Self-Address Fixing (UNSAF) 
[34] compliant protocol because it enables endpoints 
behind NATs to determine and fix the transport addresses 
(i.e., IP addresses plus transport port numbers). In other 
words, STUN allows a client to discover its mapped public 
transport address (assigned by the NAT) which will be used 
in SIP communications, instead of inserting the private 
address (which is non-routable) found on its network 
interface. The operation of STUN is illustrated in Figure 
2. For each of the local transport addresses, a STUN client 
(which is also a SIP user agent [UA]) learns from a STUN 
server the external mapped (reflexive) transport address 
seen from the public Internet. After the SIP UA obtains the 
mapped transport address (i.e., IPv4 address 140.113.1.2 
and transport port number 63611) from the STUN server, it 
could include this transport address as parameters to replace 
the private address in Figure 1(b) and compose valid SIP 
messages for interaction with the SIP server.

NAT
IPv4: 140.113.1.2

SIP Server
IPv4: 140.113.1.1

SIP UA
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

SIP
message

STUN  
message

140.113.1.1:5060

STUN Server
IPv4: 140.113.1.5

192.168.117.214:5060 140.113.1.2:63611

Figure 2 Discovering Mapped Addresses by the STUN Mechanism

Although STUN can solve NAT traversal problems 
for many NAT devices, it does not work with some NAT 
devices whose address mapping behavior is endpoint 
dependent (this kind of NAT is sometimes called a 
symmetric NAT) [32]. Figure 3 shows the address mapping 
table of an endpoint dependent mapping NAT. Note that 
this kind of NAT allocates two different mapped addresses 
when the SIP UA sends packets toward the STUN 
server and the SIP server (because they are two different 
endpoints). Consequently, the mapped address learned 
from the STUN server is not appropriate for the SIP UA to 
interact with the SIP server. In this circumstance, STUN 
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may activate an extension -- Traversal Using Relays around 
NAT (TURN) [33] in order to handle NAT traversal. TURN 
enables SIP UAs to utilize a STUN server as a traffic relay, 
which ensures that the SIP UA can always traverses the 
NAT. However, heavy loading is imposed on the STUN 
server which may potentially become the bottleneck, and 
it is very likely that the media packets follow an indirect 
path from the source to the STUN server and then to the 
destination, resulting in unacceptable long delay. For these 
reasons, IETF specifies STUN as a tool to be used as part 
of other NAT traversal solutions instead of a standalone 
solution, and this protocol is suggested to be renamed as 
“Session Traversal Utilities for NAT” [32]. Moreover, IETF 
extends STUN to run above Transmission Control Protocol 
(TCP) and Stream Control Transmission Protocol (SCTP), 
in addition to UDP. Detailed operation of STUN will be 
elaborated in the next section.

Private address

192.168.117.214:5060

Address mapping table of NAT (endpoint dependent mapping)

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

140.113.1.1:5060192.168.117.214:5060 140.113.1.2:63655

Figure 3 Address Mapping Table of an Endpoint Dependent 
Mapping NAT

The IETF recommended NAT traversal solutions 
for VoIP are outbound mechanism [35] and Iterative 
Connectivity Establishment (ICE) [17][36]. The two 
mechanisms provide NAT traversal of SIP signaling 
and its associated media flows, respectively. Actually, 
they are universal NAT traversal solutions not limited to 
VoIP applications. The outbound mechanism preserves 
signaling connections between SIP entities (e.g., UAs, 
registrar servers, and proxy servers) to allow delivery of 
SIP messages across NATs. ICE is a generic methodology 
built upon existing UNSAF protocols for providing a 
unified NAT traversal solution: with additional extension 
attributes exchanged through Session Description Protocol 
(SDP) [37], ICE allows the communication peers to 
negotiate all possible connection options for setting up 
media flows; with a STUN server running on each media 
port of the communication peers, ICE allows connectivity 
checks between peers even though no public STUN server 
is available. However, running ICE requires both the two 
peers (e.g., SIP UAs) supporting the ICE mechanism. If 
one of them does not support it, the two peers will ignore 
the ICE extension attributes in SDP and the media flow 
negotiation falls back to utilize the default transport 
address in SDP (i.e., the connection address and media port 
specified in the m= and c= lines, respectively).

3   Behaviors of NAT

In contrast to ICE which is an ambitious protocol 
heading to tackle all kinds of NAT devices, RFC 4787 
proposed basic requirements for a NAT device to minimize 
the complications it introduces to UDP applications 
[18]. It specifies detailed requirements for vendors to 
implement their NAT products, which compensate the 
lack of behavioral description of the NAT specifications 
in RFC 1631 [2]. NAT devices fulfilling the requirements 
in RFC 4787 are called BEHAVE-compliant NATs. Once 
all NATs follow these requirements, it will be easier for 
endpoints to traverse NATs because the NAT behaviors will 
be universally consistent and thus easier to handle. In the 
following paragraphs, we introduce the behaviors of NATs. 
The behavior requirements defined in RFC 4787 are also 
summarized in Table 1 (please refer to RFC 4787 [18] for 
further details).

3.1	 Address Mapping Behaviors
An address binding is created for each unique source 

transport address carried in outbound packets (i.e., 
packets passing through the NAT from its private realm 
to the public realm). Some NATs create address bindings 
according to the source transport addresses of outbound 
packets (this behavior is called endpoint independent 
mapping), while some NATs may create address bindings 
depending on both the source transport addresses and the 
destination transport addresses of the outbound packets. 
This behavior is called endpoint dependent mapping (as 
earlier described in Section 2).

3.2	 Port Assignment Behaviors
NATs have different policies for assigning a mapped 

transport port number to a private transport address. Some 
NATs attempt to preserve the same port number used in 
the private transport address as its mapped port number; 
some other NATs utilize ports in an overloading approach 
which enables a single public port number to be shared by 
multiple private transport addresses.

3.3	 Address Mapping Refresh Behaviors
Each binding in the NAT address mapping table has a 

timer. It starts counting down when the binding is created. 
If a packet passing through the NAT matches the address 
binding, the timer of this binding will be reset; if there is 
no packet matching the address binding before the timer 
expires, this address binding will be deleted. Different 
NATs may adopt different initial values for the address 
binding timer, and they may reset the timer under different 
criteria: some reset it under outbound traffic, others reset it 
under inbound traffic (i.e., traffic in the reverse direction of 
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outbound), and still others reset it under bidirectional traffic 
(i.e., either outbound or inbound traffic).

3.4	 Packet Filtering Behaviors
A NAT may maintain an access list for each of its 

bindings in its address mapping table, in order to allow 
that: only public endpoints which have received outbound 
traffic from this NAT can send inbound traffic back. This 
list may be based on the IPv4 addresses of public endpoints 
(resulting in address dependent filtering) or based on the 
transport addresses of public endpoints (resulting in address 
and port dependent filtering).

3.5	 Hairpin Behaviors
Some NATs allow two endpoints in its private realm 

to communicate with each other using their public mapped 
transport addresses. This behavior is called hairpin. The 
operation of hairpin is illustrated in Figure 4(a) where the 
SIP UA 1 delivers a UDP packet to the mapped transport 
address of the SIP UA 2. Header translation performed by 
the NAT is illustrated in Figure 4(b).

3.6	 Packet Fragmentation Behaviors
Some NATs are only capable of handling fragmented 

packets which are received in order (i.e., a sequence of 
fragmented packets with the header in the first packet). 
These NATs simply drop the packets if their arrival 
sequence is not in order.

3.7	 ALG Behaviors
Some NATs hunt for IPv4 addresses within application 

layer messages of pass-through packets, and translate them 
if they match a binding in the address mapping table.

3.8	 ICMP Behaviors
Some NATs drop inbound ICMP messages; some other 

NATs even delete the corresponding address binding when 
receiving an ICMP error message.

There are different terminologies mentioned in 
different documents to classify NAT behaviors. In RFC 
3489, NATs are classified into four different types: full 
cone NAT, restricted cone NAT, port-restricted cone NAT 
and symmetric NAT. On the other hand, STUN uses 
BEHAVE-compliant terminologies defined in RFC 4787 
to classify NAT behaviors. The RFC 3489 terminologies 
and the corresponding BEHAVE-compliant terminologies 
are summarized in Table 2 where full cone NAT is named 
as a more meaningful terminology: “endpoint independent 
mapping, no filtering” NAT. Also, the restricted cone NAT, 
port-restricted cone NAT and symmetric NAT are named 
as “endpoint independent mapping, address dependent 
filtering” NAT, “endpoint independent mapping, address 
and port dependent filtering” NAT and “endpoint dependent 
mapping, address and port dependent filtering” NAT, 

NAT
IPv4: 140.113.1.2

SIP UA 1
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

140.113.1.5:3478

STUN Server
IPv4: 140.113.1.5

192.168.117.126:5060 140.113.1.2:63632

SIP UA 2
IPv4: 192.168.117.126

1

2

3

(a) Hairpin Operation

Source address

192.168.117.214:5060

Destination address

140.113.1.2:63632

Payload

Source address

140.113.1.2:63611

Destination address

140.113.1.2:63632

Payload

Source address

140.113.1.2:63611

Destination address

192.168.117.126:5060

Payload

1 2 3

(b) Header Translation
Figure 4 Hairpin Behavior of NAT

Table 1 NAT Behaviors Required in RFC 4787

NAT behaviors RFC 4787 requirements
Address mapping A NAT must have endpoint 

independent mapping behavior.
Port assignment A NAT must not have port 

overloading behavior.
Address mapping refresh A NAT’s UDP mapping timer 

must not expire in less than two 
minutes, unless the destination 
port number is in the well-
known port range (0-1023); the 
NAT mapping refresh direction 
must support outbound refresh 
behavior.

Packet filtering If application transparency is 
important, it is recommended 
t h a t  a  N AT s h o u l d  h a v e 
endpoint independent filtering 
behavior; if a stringent filtering 
behavior is preferred, it is 
recommended  that  a  NAT 
should have address dependent 
filtering behavior.

Hairpin A  N A T  m u s t  s u p p o r t 
hairpinning.

Packet fragmentation A NAT must support receiving 
in-order  and out-of-order 
fragments.

ALG NAT ALGs for UDP-based 
protocols should be turned off.

ICMP Receipt of any sort of ICMP 
message must not terminate the 
NAT mapping.
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respectively. In the remaining parts of this article, we use 
the BEHAVE-compliant terminologies to describe NAT 
behaviors.

Note that there are some vendor shipping NAT devices 
that do not behave consistently and may change their 
behaviors over time or under load. It is hard to discover the 
behaviors of these NATs because they are nondeterministic. 
We argue that there is no deterministic behavior of these 
NAT devices because the NAT itself is a nondeterministic 
machine.

4   NAT Behavior Discovery

Current methods of NAT behavior discovery include 
three major approaches: RFC 3489 approach, Vovida 
approach, and BEHAVE approach. All these approaches 
are based on the STUN protocol, and they all perform 
some sequence of tests between the STUN client and the 
STUN server to enable the STUN client discovering NAT 
behaviors. The STUN server possesses two IPv4 addresses 
(e.g., a1 and a2) and listens on four sockets that bind on 
four different transport addresses (e.g., a1:p1, a1:p2, a2:p1 
and a2:p2). The STUN client sends a combination of test 
packets to different transport addresses of the STUN server. 
According to the results of these tests, the STUN client (SIP 
UA) determines the NAT behaviors.

There are three types of tests to be performed between 
STUN clients and STUN servers: TEST1, TEST2, and 
TEST3. Figure 5 illustrates these tests. When a STUN 
client sends a TEST1 request to a STUN server from a 
client transport address ac:pc to a server transport address 
an:pn (n = 1 or 2), the server will send back a TEST1 

response from the same server transport address (i.e., an:pn) 
to the transport address where the TEST1 request was 
initiated (e.g., through path ① and ② in Figure 5); when 
the client sends a TEST2 request to the server transport 
address an:pn, the server will send back a TEST2 response 
from its transport address a(3-n):p(3-n) to the transport address 
where the TEST2 was initiated (e.g., through path ① and 
③ in Figure 5); when the client sends a TEST3 request to 
the server transport address an:pn, the server will send back 
a TEST3 response from its transport address an:p(3-n) to the 
transport address where the TEST3 request was initiated 
(e.g., through path ① and ④ in Figure 5). Note that if these 
requests and responses are delivered above UDP, they may 
not successfully arrive at the destination because UDP is 
an unreliable transport protocol. For reliability, the client 
performs retransmission on each test: if a test fails (i.e., the 
client does not receive the response from the server after 
a request was sent for a specific time), the client considers 
that either the request sent by itself or the response sent by 
the server was lost, and the client sends the same request 
again to the server. The retransmission process will be 
repeated until the client receives a response from the server, 
or the process times out. The retransmission process has 
critical impact on the overall performance in NAT behavior 
discovery, as we shall see in Section 6.

a1:p1

a2:p1

a2:p2

SIP UA NAT STUN server

TEST1

1

2

3

TEST2

4 TEST3ac:pc

a1:p2

Figure 5 STUN Tests

Through a sequence of requests and responses 
exchanged between the client and server, STUN allows 
the client to discover the presence and behaviors of NAT 
on the path between the client and server. The following 
subsections describe how these STUN tests are utilized in 
different approaches.

4.1	 RFC 3489 Approach
The flowchart of the RFC 3489 approach is shown in 

Figure 6 where three different tests are used. This approach 
detects the seven network environments listed in Table 2. 
We illustrate the RFC 3489 approach with an example. 
Suppose the STUN server is in the public network and the 
SIP UA (which runs a STUN client on its local transport 
address) is in a private network. In this example, we assume 
the SIP UA is located behind an endpoint independent 

Table 2 Terminologies for Classifying NAT Behaviors
RFC 3489 terminologies
for network environments

BEHAVE-compliant 
terminologies

Open Internet No address  mapping,  no 
filtering

Full cone NAT E n d p o i n t  i n d e p e n d e n t 
mapping, no filtering

Restricted cone NAT E n d p o i n t  i n d e p e n d e n t 
mapping, address dependent 
filtering

Port-restricted cone NAT E n d p o i n t  i n d e p e n d e n t 
mapping, address and port 
dependent filtering

Symmetric NAT Endpoint dependent mapping, 
address and port dependent 
filtering

Symmetric UDP firewall No address mapping, address 
and port dependent filtering

UDP blocked Unreachable
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mapping, address and port dependent filtering NAT. The 
SIP UA determines its network environment with the 
following steps.

   Send the 1st TEST1
 request to server a 1:p1

Mapped address 
is local address ?

TEST1 succeed?
No

   Send the 2nd TEST1
request to server a 2:p1

TEST2 succeed?

   Send TEST2 request
          to server a 1:p1

Same mapped 
address (1st and 

2nd)?

   Send TEST2 request
          to server a 1:p1

TEST2 succeed?

   Send TEST3 request
          to server a 1:p1

TEST3 succeed?

Yes

a

b

c

d f

e g

h

i

j

k

NoYes

Yes

No

NoYes

NoYes

No

Yes

(D)
Endpoint independent 

mapping , address 
dependent filtering

(E)
Endpoint independent 

mapping , address 
and port dependent 

filtering

Start

(B)
No address mapping ,

address and port 
dependent filtering

(F)
Endpoint dependent 
mapping , address 

and port dependent 
filtering

(C)
Endpoint independent 
mapping , no filtering

(G)
Unreachable

(A)
No address mapping , 

no filtering

Figure 6 RFC 3489 Approach

Step 1: The client performs a TEST1 test by sending a 
TEST1 request through the NAT to the server transport 
address a1:p1 (Figure 6ⓐ). The server sends back a response 
from the transport address a1:p1 through the NAT to the 
client. This response carries the mapped transport address 
of the local transport address.
Step 2: Upon receipt of the TEST1 response (Figure 6ⓑ), 
the client discovers that the carried mapped transport 
address in the TEST1 response is not the local transport 
address in use (Figure 6ⓒ).
Step 3: The client performs a TEST2 test by sending a 
TEST2 request through the NAT to the server transport 
address a1:p1 (Figure 6ⓕ). The server sends back a response 
from the transport address a2:p2 which would be blocked 
by the NAT (because of the address and port dependent 
filtering behavior).
Step 4: After the retransmission procedure, the TEST2 
test fails (Figure 6ⓖ). The client then performs a second 
TEST1 test by sending a TEST1 request through the NAT 
to another server transport address a2:p1 (Figure 6ⓗ). The 
server sends back a response from the transport address 
a2:p1 through the NAT to the client. This response also 
carries the mapped transport address of the local transport 
address.

Step 5: Upon receipt of the second TEST1 response (Figure 
6ⓘ), the client discovers that the carried mapped transport 
address in this response is the same as that one obtained in 
the previous TEST1 response (in Step 2).
Step 6: The client performs a TEST3 test by sending a 
TEST3 request through the NAT to the server transport 
address a1:p1 (Figure 6ⓙ). The server sends back a response 
from the transport address a1:p2, which would be blocked 
by the NAT (because of the address and port dependent 
filtering behavior).
Step 7: After the retransmission procedure, the TEST3 test 
fails (Figure 6ⓚ). The client then discovers that it is in a 
private network behind an endpoint independent mapping, 
address and port dependent filtering NAT (Figure 6 [E]).

In the example above, the client needs to wait for the 
latency of two retransmission procedures (in Step 4 and 
Step 7) which may cause unacceptable interruption for 
VoIP applications. Imagine a SIP UA running on a mobile 
device, when it hands over from its home network to a 
visited network behind an endpoint independent mapping, 
address and port dependent filtering NAT. If the SIP UA 
has to wait for a long time to discover its current network 
environment before it can resume the media transmission, it 
will cause an unacceptable long interruption.

4.2	 Vovida Approach
To reduce the overall delay, Vovida improved the RFC 

3489 approach by running some tests in parallel. Figure 7 
shows the flowchart of the Vovida approach where several 
tests (i.e., the TEST1 test in Figure 6ⓐ, the TEST2 test in 
Figure 6ⓓ and ⓕ, and the TEST3 test in Figure 6ⓙ) all run 
in parallel (i.e., Figure 7ⓐ). Unlike the RFC 3489 approach 
that runs the tests sequentially, the Vovida approach runs 
all tests at the beginning and then discover NAT behaviors 
according to the results.

In this approach, the TEST1 test in Figure 7ⓒ is the 
same as the one in Figure 6ⓗ. This test (the second TEST1 
test) can not be run at the beginning with the other three 
tests in Figure 7ⓐ because the STUN client only knows one 
transport address of the STUN server (e.g., a1:p1; obtained 
through domain name system or dynamic host configuration 
protocol). The other transport addresses of the STUN server 
is learned by the STUN client after receiving a response 
from the STUN server in Figure 7ⓑ. In Figure 7ⓒ, the 
client may also retransmit TEST2 requests and TEST3 
requests to the server if these tests have not succeeded. If 
one of the TEST2 or TEST3 tests is not finished, the NAT 
behavior discovery logic will not advance to Figure 7ⓕ.

The flowchart of this approach is very similar to that of 
the RFC 3489 approach, so we do not elaborate the details 
here.
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   Send the 1st TEST1
Request to server a 1:p1;
   Send TEST2 request
          to server a 1:p1;
   Send TEST3 request
          to server a 1:p1;

Mapped address 
is local address?

TEST1 succeed?

  Send the 2nd TEST1 
request to server a 2:p1

(retransmit TEST2 
requests and TEST 3  
requests if needed )

TEST2 succeed?

TEST3 succeed?

TEST2 succeed?

Same mapped 
address (1st and 
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Figure 7 Vovida Approach

4.3	 BEHAVE Approach
The logic of NAT behavior determination in the 

BEHAVE approach is similar to the previous two 
approaches (which are based on TEST1, TEST2 and 
TEST3). However, unlike the RFC 3489 approach and 
the Vovida approach that discover the address mapping 
behaviors of NATs along with the packet filtering 
behaviors, the BEHAVE approach decouples the discovery 
of these two behaviors into two procedures. The flowchart 
of the BEHAVE approach is shown in Figure 8 where the 
discovery of address mapping and packet filtering behaviors 
are illustrated in Figure 8(a) and Figure 8(b), respectively. 
The separation of these two procedures enables STUN 
clients to discovery the behaviors of address mapping 
or packet filtering independently, without unrequited 
overhead. For example, when a STUN client only wants to 
know the address mapping behavior, it can simply execute 
the address mapping behavior discovery procedure (Figure 
8[a]) to avoid the overhead of packet filtering behavior 
discovery (Figure 8[b]). If a STUN client intends to use the 
BEHAVE approach to discover both the address mapping 
and packet filtering behaviors, it could combine the two 
procedures in Figure 8(a) and Figure 8(b) to reduce the 
overhead [13]. Details are not elaborated here.

   Send the 2nd TEST1
  request to server a 2:p1

   Send the 1st TEST1
  request to server a 1:p1

TEST1 succeed?

Mapped address 
is local address?

Same mapped 
address (1st and 

2nd)?

No

Yes

NoYes

NoYes

Start

(A)
No address mapping

(E)
Unreachable

(C)
Endpoint (address)
dependent mapping

(B)
Endpoint independent 

mapping

(D)
Endpoint (address 

and port ) dependent 
mapping

   Send  the 3rd TEST1
 request to server a 2:p2

Same mapped 
address (2nd and 

3rd)?

NoYes

a

b

c

e

d

f

g

(a) Discovery of Address Mapping Behavior

   Send TEST2 request
          to server a 1:p1

   Send TEST1 request
          to server a 1:p1

TEST1 succeed?

TEST2 succeed?

No

Yes

Yes

Start

Unreachable

Address dependent 
filtering

Endpoint independent 
filtering

Address and port
dependent filtering

   Send TEST 3 request
          to server a 1:p1

TEST3 succeed?
NoYes

No

(b) Discovery of Packet Filtering Behavior
Figure 8 BEHAVE Approach

01-JIT_08138.indd   205 2011/3/22   下午 23:01:56



Journal of Internet Technology Volume 12 (2011) No.2206

5   NAT Behavior Discover in VoIP 
Applications

For VoIP applications (e.g., SIP UAs) to traverse NAT, 
discovery of the packet filtering behaviors in their current 
network environments is unnecessary. Because SIP UAs 
are required to keep alive the address binding on NATs 
for receiving inbound SIP signaling messages, they need 
to send packets periodically to their peers to refresh the 
address binding timer. This behavior forces SIP UAs to 
send outbound packets prior to inbound packets, and helps 
to conquer the obstacles of firewalls and the packet filtering 
behaviors of NATs.

Besides the address mapping behaviors and packet 
filtering behaviors, a NAT has several other behaviors like 
address mapping refresh behaviors, hairpin behaviors, 
packet fragmentation behaviors and so on. The discovery 
of these behaviors is minor for VoIP applications compared 
with the discovery of the address mapping behaviors. For 
a SIP UA, the most important information is a suitable 
transport address to be inserted into its application level 
messages for connection setup.

By using STUN to discover the presence and behaviors 
of NAT, SIP devices (especially those that have implemented 
STUN but have not implemented ICE) are able to traverse 
NAT. The SIP UAs can utilize this information along with 
STUN and its extension (TURN) to handle NAT traversal. 
As shown in Table 1, the BEHAVE-compliant NATs 
support hairpinning and their address mapping behaviors 
are endpoint independent. These behaviors can be handled 
by STUN without relays. Although the STUN document 
specifies it to be merely a tool as part of other NAT 
traversal solutions, STUN is useful enough to handle the 
traversal of BEHAVE-compliant NATs without bottleneck 
effect or non-optimal routing path problem suffered by 
TURN. Since more and more NAT products are going to be 
(or have already been) BEHAVE-compliant NATs, if SIP 
devices are administrated within a specific domain (e.g., 
3G cellular networks) and the NAT devices in this domain 
are all BEHAVE-compliant, then these SIP devices can 
use STUN as a standalone NAT traversal solution without 
any problems. Moreover, many existing SIP devices have 
implemented STUN, vendors may choose to upgrade their 
SIP devices with NAT behavior discovery to lower down 
the cost, rather than straightforwardly implementing the 
complicated ICE solution on their SIP devices.

We propose a simplified approach for NAT behavior 
discovery in this scenario. This approach is based on the 
BEHAVE approach, and its flowchart is shown in Figure 
9. It is simpler than the previous three approaches because 
it only considers the address mapping behaviors and its 
outputs are more meaningful and more suitable for VoIP 

applications. Because of the simplification, the proposed 
approach can reduce the call establishment time of VoIP 
applications, and therefore the proposed approach is more 
suitable for VoIP applications compared with the other three 
approaches. The differences between this approach and the 
previous approaches are described below.
1.	This approach does not intend to discover the filtering 

behaviors in the network.
2.	This approach combines equivalent outputs of previous 

approaches, i.e., the three outputs in Figure 6 (C), (D), 
and (E) (or Figure 7[C], [D], and [E]) are combined into 
a single output: endpoint independent mapping (Figure 
9[B]); and the two outputs in Figure 8(a), (C) and (D) 
are combined into a single output: endpoint dependent 
mapping (Figure 9 [C]).

3.	This approach reduces the complexity of the previous 
three approaches. It uses only two TEST1 tests (Figure 
9 a and d) to determine the address mapping behaviors. 
Compared with the previous two approaches that need at 
most four tests to determine the behaviors of a NAT (i.e., 
two TEST1 tests plus a TEST2 and a TEST3 test for the 
outputs in Figure 6 [D] and [E]), this approach is simpler.
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  request to server a 1:p1
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Figure 9 NAT Behavior Discovery in VoIP Applications

To prevent unnecessary using STUN servers as traffic 
relays, a SIP UA needs to determine whether to activate 
TURN or not. In other words, the SIP UA has to detect 
the address mapping behavior of the NAT to see if it is 
endpoint dependent mapping. If the SIP UA discovers an 
endpoint independent mapping NAT, then it can simply use 
STUN to traverse the NAT. Otherwise it must use TURN. 
Table 3 summarizes possible network environments for a 
SIP UA (only network translation behaviors are highlighted, 
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while firewalls and the filtering behaviors of NATs are 
not considered here because they are not significant as 
described in the previous paragraphs).

Table 3 Network Environments and the Corresponding NAT 
Traversal Techniques

Network environments NAT traversal techniques
No address mapping None

Endpoint independent mapping STUN
Endpoint dependent mapping TURN

6   Cost Analyses

We analyze the cost of these approaches in discovering 
the NAT address mapping behavior.  The analysis 
environment is a simple STUN configuration as shown in 
Figure 5. These approaches are independent of the RTP 
traffic because they are executed before the establishment 
of VoIP calls, and therefore the performance metrics 
used here are total execution time and count of generated 
packets.

6.1	 Parameters and Basic Derivations for Analytical 
Modeling
In VoIP applications, STUN tests are transmitted above 

UDP which does not support reliable packet transportation. 
If the STUN client does not receive a response from the 
STUN server for its transmitted test packet, it retransmits 
the test packet when the retransmission timer expires. The 
average delay for a failed test, Ttimeout, needs to wait until the 
retransmission procedure is completed, so it will be equal 
to the total latency of the retransmission procedure.

where N is the number of trials for a test, and Ti is the 
retransmission timer value of the i-th transmission trial. In 
the STUN protocol, Ti is an exponentially grown value:

where ∆ is the initial value, γ  is the growth factor, and m is 
the boundary of growth. The average delay for a successful 
test, Tresponse, is

where TRTT is the round-trip time between then STUN client 
and STUN server, pi is the probability that the STUN client 
successfully gets the response from the STUN server in the 
i-th transmission trial. pi can be computed by:

where p is the packet loss rate.
Similarly, the count of generated packets of a failed 

test, Ctimeout, suffers the whole retransmission procedure, and 
its average value is

The average count of generated packets for a successful 
test, Cresponse, is

In the STUN protocol, the default parameters are: N = 
7, ∆ = 500ms, γ  = 2, and m = 6 (which implies T1 = 500ms, 
T2 = 1000ms, T3 = 2000ms, T4 = 4000ms, T5 = 8000ms, T6 = 
16000ms, T7 = 8000ms). We can foresee that Ttimeout = 39.5 
seconds which is unacceptable for VoIP applications.

6.2	 Total Execution Time
The total execution time needed for these approaches 

is divergent because each of them utilizes a different 
algorithm to discover a network environment. For example, 
when the NAT behavior is endpoint independent mapping, 
address and port dependent filtering, the RFC 3489 
approach needs to perform four tests (Figure 6ⓐ, ⓕ, ⓗ and 
ⓙ) and it requires the latency of two failed tests (Figure 
6ⓕ and ⓙ) plus the latency of two successful tests (Figure 
6ⓐ and ⓗ). However, in the same environment, the total 
execution time required for the Vovida approach is the 
latency of one failed test or two successful tests (Figure 7ⓐ 
and ⓒ; the reason will be elaborated in the next paragraph), 
while the total execution time required for the BEHAVE 
approach and the proposed approach is the latency of two 
successful tests (Figure 8(a) ⓐ and ⓓ, and Figure 9ⓐ and 
ⓓ, respectively).

Suppose TRTT = 50ms and loss rate p = 0 (which 
means that all requests/responses arrive at the destination 
successfully), the total execution time of these approaches 
is shown in Figure 10. Note that the Vovida approach 
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performs tests in parallel, and therefore its total execution 
time is

max{latency of TEST2, latency of TEST3,
latency of TEST1+latency of another TEST1}

= max{Ttimeout, 2Tresponse}

In other words, its latency is either 2Tresponse if the 
three tests in Figure 7ⓐ are successful, or Ttimeout if any 
one of the three tests in Figure 7ⓐ fails. Among these 
approaches, the proposed approach is faster than the other 
approaches in any case. The Vovida approach has similar 
execution latency for every network environments (which 
is caused by the parallel process execution), and the RFC 
3489 approach needs longest execution time for almost all 
network environments.
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6.3	 Count of Generated Packets
Suppose p = 0, two packets will be delivered between 

the STUN client and the STUN server (one for request and 
one for response) for a successful test and 14 packets are 
generated for a failed test. The packet count comparison 
between these approaches is shown in Figure 11. Among 
these approaches, the proposed approach generates fewer 
packets than the other approaches in any case. The Vovida 
approach generates the most packets because of its parallel 
characteristic.
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From the analyses of total execution time (Figure 10) 
and count of generated packets (Figure 11), we observed 
that the RFC 3489 approach has longer execution time and 
it needs to generate a lot of packets to discover the network 
environments, and the Vovida approach has to generate a lot 
of test packets because it launches parallel tests in Figure 
7ⓐ and ⓒ. Compared with these approaches, the proposed 
approach is more efficient in most cases.

We further run these approaches in an experimental 
environment  to  measure  their  performance.  The 
experimental results are very close to the analytical results 
above so we omit them here.

From the analyses in Sections 6, we know that the total 
execution time and count of generated packet of a NAT 
behavior discovery approach are dominated by Ttimeout and 
Ctimeout, respectively. The proposed approach is superior to 
the other three approaches in any case whatever the loss 
rate p is, because it requires less Ctimeout or Ttimeout.

7   Conclusion

In wireless network deployment, NAT is commonly 
adopted to allow multiple devices accessing the Internet 
with only a public IP address. This paper presents the 
NAT issues of VoIP applications, and introduces the 
current solutions for user applications to traverse NATs. 
We surveyed the divergent NAT behaviors and the IETF 
requirements for NAT devices. Moreover, we described 
how to utilize STUN to discover the behavior of the NATs, 
especially the BEHAVE-compliant NATs. We also proposed 
a simplified NAT behavior discovery approach for VoIP 
applications. The proposed approach is useful in scenarios 
where VoIP devices are administrated within a specific 
domain, e.g., 3G cellular networks.
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