
199A Survey of NAT Behavior Discovery in VoIP Applications

A Survey of NAT Behavior Discovery in VoIP Applications
Shiang-Ming Hunag1, Quincy Wu2

1Department of Computer Science, National Chiao Tung University, Taiwan
2Graduate Institute of Communication Engineering, National Chi Nan University, Taiwan

smhuang@cs.nctu.edu.tw, solomon@ipv6.club.tw

Abstract

Because of the foreseeing depletion of Internet
Protocol (IP) addresses, Network Address Translation
(NAT) is ubiquitously deployed to allow hosts to connect
to the Internet through a single shared public IP address,
which is a popular approach in deploying wireless local
area network (WLAN). Although NAT proves to work well
with traditional client/server applications, its existence
and non-standard behaviors are the major problem which
cripples voice over IP (VoIP) applications. In addition to
some efforts which attempt to devise complicated protocols
to tackle all NAT varieties, there are also efforts in Internet
communities trying to standardize the behaviors of NAT.
Therefore, it becomes crucial for a network device to
discover the existence of NAT in its subnet and to determine
the NAT behaviors, so that it can choose the optimal NAT
traversal mechanisms to apply. In this paper, we surveyed
the divergent NAT behaviors and then proposed a simplified
NAT behavior discovery approach which is more suitable
for VoIP applications. The proposed approach can reduce
the call establishment time of VoIP applications, which is
useful in scenarios where VoIP devices are administrated
within a specific domain, e.g., 3G cellular networks.

Keywords:	 NAT, STUN, NAT behavior discovery.

1 Introduction

Internet Protocol (IP) address is a resource which is
required by every device to connect to the Internet. Due
to IP version 4 (IPv4) address depletion in the 1990s,
Network Address Translation (NAT) [1] was proposed to
allow a group of devices in an internal private network
to hide behind a single server and to access the external
Internet using a shared public IPv4 address. NAT was
proposed to be a short-term solution, as the original NAT
specification [2] described NAT to be: “If nothing else, this
solution can serve to provide temporarily relief while other,
more complex and far-reaching solutions are worked out”.
However, nowadays the deployment of NAT has reached an
almost ubiquitous situation [3-4], although the “far-reaching

solution” of the original NAT specification -- IP version 6
(IPv6) [5] has already been developed for a few years.

NAT translates IPv4 addresses and transport port
numbers of the pass-through packets between private
and public address realms. This operation invalidates
normal behaviors of many protocols, especially those
for voice over IP (VoIP) applications [6-9]. Many VoIP
protocols, such as Session Initiation Protocol (SIP) [10]
and Real-Time Streaming Protocol (RTSP) [11], are
problematic when they interwork with NAT because many
communication parameters carried within their application
layer messages are IPv4 addresses and transport port
numbers of the endpoints. Since these parameters are used
for setting up end-to-end connections between endpoints,
in case one endpoint is located in a private network behind
NAT, the IPv4 addresses carried in these messages for that
endpoint would be private and therefore not routable from
other endpoints in public networks. Figure 1(a) illustrates a
scenario where a SIP client and a SIP server are located in
two different subnets separated by a NAT device. When the
client sends a SIP message to the server, the NAT assigns
a mapped address to the private address of the client and
creates a binding between the two addresses. This binding
is stored in the address mapping table of the NAT, and the
NAT translates packets according to this mapping table.
Figure 1(b) shows an example of the SIP message sent
from the client to the server. In this message, fields used
for setting up connections are shown in bold text. We can
observe that many parameters carried in this message are
not routable because they are the private address which the
client detects from its local network interface.

The address binding and the translation mechanism
are the basis of NAT. They were documented in the NAT
specifications [1-2] when it was proposed. However, these
documents did not specify the rules for address binding and
the principle for subsequent packet handling. Therefore,
each vendor developed their NAT products based on their
own understanding about NAT, and this results in divergent
NAT behaviors in handling the pass-through packets,
especially inbound packets (i.e., packets sent from the
public realm to the private realm of a NAT) [12-16].

The divergent behaviors of NAT devices make NAT
traversal difficult. It has been shown that a NAT traversal
solution which is a good choice in one scenario may
behave poorly in many other scenarios [17]. To reduce

*Corresponding author: Quincy Wu; E-mail: solomon@ipv6.club.tw

*This work was sponsored in part by NSC under grant number NSC 96-
2219-E-260-001 and 98-2221-E-260-020.

01-JIT_08138.indd 199 2011/3/22 下午 23:01:54

Journal of Internet Technology Volume 12 (2011) No.2200

the effort required for endpoints to traverse NAT, Internet
Engineering Task Force (IETF) BEHAVE Working Group
proposed NAT behavioral requirements to unify the NAT
behaviors [18-21]. Moreover, it also proposed a NAT
behavior discovery approach for endpoints to detect the
behaviors of the NAT in its current network [13].

NAT
IPv4: 140.113.1.2

SIP Server
IPv4: 140.113.1.1

SIP client
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.1:5060

SIP message SIP message

(a) NAT and Its Address Mapping Table

INVITE sip:callee@sip.ipv6.club.tw SIP/2.0

Via: SIP/2.0/UDP

192.168.117.214:5060;branch=z9hG4bK6608;rport

From: <sip:caller@sip.ipv6.club.tw>;tag=8653

To: <sip:callee@sip.ipv6.club.tw>

Call-ID: 7557@192.168.117.214

CSeq: 1 INVITE

Contact: <sip:caller@192.168.117.214:5060>

Content-Type: application/sdp

Content-Length: 144

v=0

o=userX 20000001 20000001 IN IP4 192.168.117.214

s=A call

c=IN IP4 192.168.117.214

t=0 0

m=audio 9000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

(b) The SIP Message Sent from a Client behind a NAT Device
Figure 1 Problematic SIP Messages under NAT

Prior to the NAT behavior discovery approach
proposed by the IETF BEHAVE Working Group, there
had been proposals from RFC 3489 [22], and Vovida [23]
which also aim to discover the NAT behaviors. In this
article, we describe these approaches and discuss their
applicability. Furthermore, we propose a simplified NAT
behavior discovery approach which is more suitable for
VoIP applications.

2 NAT Traversal Solutions

NAT invalidates normal behaviors of many VoIP
protocols. Several solutions have been proposed to mitigate
this problem [3][17][22][24-33]. Among them, Simple
Traversal of User Datagram Protocol (UDP) through NAT
(STUN) [22] is a technique widely adopted in existing SIP
devices. It is a UNilateral Self-Address Fixing (UNSAF)
[34] compliant protocol because it enables endpoints
behind NATs to determine and fix the transport addresses
(i.e., IP addresses plus transport port numbers). In other
words, STUN allows a client to discover its mapped public
transport address (assigned by the NAT) which will be used
in SIP communications, instead of inserting the private
address (which is non-routable) found on its network
interface. The operation of STUN is illustrated in Figure
2. For each of the local transport addresses, a STUN client
(which is also a SIP user agent [UA]) learns from a STUN
server the external mapped (reflexive) transport address
seen from the public Internet. After the SIP UA obtains the
mapped transport address (i.e., IPv4 address 140.113.1.2
and transport port number 63611) from the STUN server, it
could include this transport address as parameters to replace
the private address in Figure 1(b) and compose valid SIP
messages for interaction with the SIP server.

NAT
IPv4: 140.113.1.2

SIP Server
IPv4: 140.113.1.1

SIP UA
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

SIP
message

STUN
message

140.113.1.1:5060

STUN Server
IPv4: 140.113.1.5

192.168.117.214:5060 140.113.1.2:63611

Figure 2 Discovering Mapped Addresses by the STUN Mechanism

Although STUN can solve NAT traversal problems
for many NAT devices, it does not work with some NAT
devices whose address mapping behavior is endpoint
dependent (this kind of NAT is sometimes called a
symmetric NAT) [32]. Figure 3 shows the address mapping
table of an endpoint dependent mapping NAT. Note that
this kind of NAT allocates two different mapped addresses
when the SIP UA sends packets toward the STUN
server and the SIP server (because they are two different
endpoints). Consequently, the mapped address learned
from the STUN server is not appropriate for the SIP UA to
interact with the SIP server. In this circumstance, STUN

01-JIT_08138.indd 200 2011/3/22 下午 23:01:55

201A Survey of NAT Behavior Discovery in VoIP Applications

may activate an extension -- Traversal Using Relays around
NAT (TURN) [33] in order to handle NAT traversal. TURN
enables SIP UAs to utilize a STUN server as a traffic relay,
which ensures that the SIP UA can always traverses the
NAT. However, heavy loading is imposed on the STUN
server which may potentially become the bottleneck, and
it is very likely that the media packets follow an indirect
path from the source to the STUN server and then to the
destination, resulting in unacceptable long delay. For these
reasons, IETF specifies STUN as a tool to be used as part
of other NAT traversal solutions instead of a standalone
solution, and this protocol is suggested to be renamed as
“Session Traversal Utilities for NAT” [32]. Moreover, IETF
extends STUN to run above Transmission Control Protocol
(TCP) and Stream Control Transmission Protocol (SCTP),
in addition to UDP. Detailed operation of STUN will be
elaborated in the next section.

Private address

192.168.117.214:5060

Address mapping table of NAT (endpoint dependent mapping)

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

140.113.1.1:5060192.168.117.214:5060 140.113.1.2:63655

Figure 3 Address Mapping Table of an Endpoint Dependent
Mapping NAT

The IETF recommended NAT traversal solutions
for VoIP are outbound mechanism [35] and Iterative
Connectivity Establishment (ICE) [17][36]. The two
mechanisms provide NAT traversal of SIP signaling
and its associated media flows, respectively. Actually,
they are universal NAT traversal solutions not limited to
VoIP applications. The outbound mechanism preserves
signaling connections between SIP entities (e.g., UAs,
registrar servers, and proxy servers) to allow delivery of
SIP messages across NATs. ICE is a generic methodology
built upon existing UNSAF protocols for providing a
unified NAT traversal solution: with additional extension
attributes exchanged through Session Description Protocol
(SDP) [37], ICE allows the communication peers to
negotiate all possible connection options for setting up
media flows; with a STUN server running on each media
port of the communication peers, ICE allows connectivity
checks between peers even though no public STUN server
is available. However, running ICE requires both the two
peers (e.g., SIP UAs) supporting the ICE mechanism. If
one of them does not support it, the two peers will ignore
the ICE extension attributes in SDP and the media flow
negotiation falls back to utilize the default transport
address in SDP (i.e., the connection address and media port
specified in the m= and c= lines, respectively).

3 Behaviors of NAT

In contrast to ICE which is an ambitious protocol
heading to tackle all kinds of NAT devices, RFC 4787
proposed basic requirements for a NAT device to minimize
the complications it introduces to UDP applications
[18]. It specifies detailed requirements for vendors to
implement their NAT products, which compensate the
lack of behavioral description of the NAT specifications
in RFC 1631 [2]. NAT devices fulfilling the requirements
in RFC 4787 are called BEHAVE-compliant NATs. Once
all NATs follow these requirements, it will be easier for
endpoints to traverse NATs because the NAT behaviors will
be universally consistent and thus easier to handle. In the
following paragraphs, we introduce the behaviors of NATs.
The behavior requirements defined in RFC 4787 are also
summarized in Table 1 (please refer to RFC 4787 [18] for
further details).

3.1	 Address Mapping Behaviors
An address binding is created for each unique source

transport address carried in outbound packets (i.e.,
packets passing through the NAT from its private realm
to the public realm). Some NATs create address bindings
according to the source transport addresses of outbound
packets (this behavior is called endpoint independent
mapping), while some NATs may create address bindings
depending on both the source transport addresses and the
destination transport addresses of the outbound packets.
This behavior is called endpoint dependent mapping (as
earlier described in Section 2).

3.2	 Port Assignment Behaviors
NATs have different policies for assigning a mapped

transport port number to a private transport address. Some
NATs attempt to preserve the same port number used in
the private transport address as its mapped port number;
some other NATs utilize ports in an overloading approach
which enables a single public port number to be shared by
multiple private transport addresses.

3.3	 Address Mapping Refresh Behaviors
Each binding in the NAT address mapping table has a

timer. It starts counting down when the binding is created.
If a packet passing through the NAT matches the address
binding, the timer of this binding will be reset; if there is
no packet matching the address binding before the timer
expires, this address binding will be deleted. Different
NATs may adopt different initial values for the address
binding timer, and they may reset the timer under different
criteria: some reset it under outbound traffic, others reset it
under inbound traffic (i.e., traffic in the reverse direction of

01-JIT_08138.indd 201 2011/3/22 下午 23:01:56

Journal of Internet Technology Volume 12 (2011) No.2202

outbound), and still others reset it under bidirectional traffic
(i.e., either outbound or inbound traffic).

3.4	 Packet Filtering Behaviors
A NAT may maintain an access list for each of its

bindings in its address mapping table, in order to allow
that: only public endpoints which have received outbound
traffic from this NAT can send inbound traffic back. This
list may be based on the IPv4 addresses of public endpoints
(resulting in address dependent filtering) or based on the
transport addresses of public endpoints (resulting in address
and port dependent filtering).

3.5	 Hairpin Behaviors
Some NATs allow two endpoints in its private realm

to communicate with each other using their public mapped
transport addresses. This behavior is called hairpin. The
operation of hairpin is illustrated in Figure 4(a) where the
SIP UA 1 delivers a UDP packet to the mapped transport
address of the SIP UA 2. Header translation performed by
the NAT is illustrated in Figure 4(b).

3.6	 Packet Fragmentation Behaviors
Some NATs are only capable of handling fragmented

packets which are received in order (i.e., a sequence of
fragmented packets with the header in the first packet).
These NATs simply drop the packets if their arrival
sequence is not in order.

3.7	 ALG Behaviors
Some NATs hunt for IPv4 addresses within application

layer messages of pass-through packets, and translate them
if they match a binding in the address mapping table.

3.8	 ICMP Behaviors
Some NATs drop inbound ICMP messages; some other

NATs even delete the corresponding address binding when
receiving an ICMP error message.

There are different terminologies mentioned in
different documents to classify NAT behaviors. In RFC
3489, NATs are classified into four different types: full
cone NAT, restricted cone NAT, port-restricted cone NAT
and symmetric NAT. On the other hand, STUN uses
BEHAVE-compliant terminologies defined in RFC 4787
to classify NAT behaviors. The RFC 3489 terminologies
and the corresponding BEHAVE-compliant terminologies
are summarized in Table 2 where full cone NAT is named
as a more meaningful terminology: “endpoint independent
mapping, no filtering” NAT. Also, the restricted cone NAT,
port-restricted cone NAT and symmetric NAT are named
as “endpoint independent mapping, address dependent
filtering” NAT, “endpoint independent mapping, address
and port dependent filtering” NAT and “endpoint dependent
mapping, address and port dependent filtering” NAT,

NAT
IPv4: 140.113.1.2

SIP UA 1
IPv4: 192.168.117.214

Private address

192.168.117.214:5060

Address mapping table of NAT

Mapped address

140.113.1.2:63611

Remote address

140.113.1.5:3478

140.113.1.5:3478

STUN Server
IPv4: 140.113.1.5

192.168.117.126:5060 140.113.1.2:63632

SIP UA 2
IPv4: 192.168.117.126

1

2

3

(a) Hairpin Operation

Source address

192.168.117.214:5060

Destination address

140.113.1.2:63632

Payload

Source address

140.113.1.2:63611

Destination address

140.113.1.2:63632

Payload

Source address

140.113.1.2:63611

Destination address

192.168.117.126:5060

Payload

1 2 3

(b) Header Translation
Figure 4 Hairpin Behavior of NAT

Table 1 NAT Behaviors Required in RFC 4787

NAT behaviors RFC 4787 requirements
Address mapping A NAT must have endpoint

independent mapping behavior.
Port assignment A NAT must not have port

overloading behavior.
Address mapping refresh A NAT’s UDP mapping timer

must not expire in less than two
minutes, unless the destination
port number is in the well-
known port range (0-1023); the
NAT mapping refresh direction
must support outbound refresh
behavior.

Packet filtering If application transparency is
important, it is recommended
t h a t a N AT s h o u l d h a v e
endpoint independent filtering
behavior; if a stringent filtering
behavior is preferred, it is
recommended that a NAT
should have address dependent
filtering behavior.

Hairpin A N A T m u s t s u p p o r t
hairpinning.

Packet fragmentation A NAT must support receiving
in-order and out-of-order
fragments.

ALG NAT ALGs for UDP-based
protocols should be turned off.

ICMP Receipt of any sort of ICMP
message must not terminate the
NAT mapping.

01-JIT_08138.indd 202 2011/3/22 下午 23:01:56

203A Survey of NAT Behavior Discovery in VoIP Applications

respectively. In the remaining parts of this article, we use
the BEHAVE-compliant terminologies to describe NAT
behaviors.

Note that there are some vendor shipping NAT devices
that do not behave consistently and may change their
behaviors over time or under load. It is hard to discover the
behaviors of these NATs because they are nondeterministic.
We argue that there is no deterministic behavior of these
NAT devices because the NAT itself is a nondeterministic
machine.

4 NAT Behavior Discovery

Current methods of NAT behavior discovery include
three major approaches: RFC 3489 approach, Vovida
approach, and BEHAVE approach. All these approaches
are based on the STUN protocol, and they all perform
some sequence of tests between the STUN client and the
STUN server to enable the STUN client discovering NAT
behaviors. The STUN server possesses two IPv4 addresses
(e.g., a1 and a2) and listens on four sockets that bind on
four different transport addresses (e.g., a1:p1, a1:p2, a2:p1
and a2:p2). The STUN client sends a combination of test
packets to different transport addresses of the STUN server.
According to the results of these tests, the STUN client (SIP
UA) determines the NAT behaviors.

There are three types of tests to be performed between
STUN clients and STUN servers: TEST1, TEST2, and
TEST3. Figure 5 illustrates these tests. When a STUN
client sends a TEST1 request to a STUN server from a
client transport address ac:pc to a server transport address
an:pn (n = 1 or 2), the server will send back a TEST1

response from the same server transport address (i.e., an:pn)
to the transport address where the TEST1 request was
initiated (e.g., through path ① and ② in Figure 5); when
the client sends a TEST2 request to the server transport
address an:pn, the server will send back a TEST2 response
from its transport address a(3-n):p(3-n) to the transport address
where the TEST2 was initiated (e.g., through path ① and
③ in Figure 5); when the client sends a TEST3 request to
the server transport address an:pn, the server will send back
a TEST3 response from its transport address an:p(3-n) to the
transport address where the TEST3 request was initiated
(e.g., through path ① and ④ in Figure 5). Note that if these
requests and responses are delivered above UDP, they may
not successfully arrive at the destination because UDP is
an unreliable transport protocol. For reliability, the client
performs retransmission on each test: if a test fails (i.e., the
client does not receive the response from the server after
a request was sent for a specific time), the client considers
that either the request sent by itself or the response sent by
the server was lost, and the client sends the same request
again to the server. The retransmission process will be
repeated until the client receives a response from the server,
or the process times out. The retransmission process has
critical impact on the overall performance in NAT behavior
discovery, as we shall see in Section 6.

a1:p1

a2:p1

a2:p2

SIP UA NAT STUN server

TEST1

1

2

3

TEST2

4 TEST3ac:pc

a1:p2

Figure 5 STUN Tests

Through a sequence of requests and responses
exchanged between the client and server, STUN allows
the client to discover the presence and behaviors of NAT
on the path between the client and server. The following
subsections describe how these STUN tests are utilized in
different approaches.

4.1	 RFC 3489 Approach
The flowchart of the RFC 3489 approach is shown in

Figure 6 where three different tests are used. This approach
detects the seven network environments listed in Table 2.
We illustrate the RFC 3489 approach with an example.
Suppose the STUN server is in the public network and the
SIP UA (which runs a STUN client on its local transport
address) is in a private network. In this example, we assume
the SIP UA is located behind an endpoint independent

Table 2 Terminologies for Classifying NAT Behaviors
RFC 3489 terminologies
for network environments

BEHAVE-compliant
terminologies

Open Internet No address mapping, no
filtering

Full cone NAT E n d p o i n t i n d e p e n d e n t
mapping, no filtering

Restricted cone NAT E n d p o i n t i n d e p e n d e n t
mapping, address dependent
filtering

Port-restricted cone NAT E n d p o i n t i n d e p e n d e n t
mapping, address and port
dependent filtering

Symmetric NAT Endpoint dependent mapping,
address and port dependent
filtering

Symmetric UDP firewall No address mapping, address
and port dependent filtering

UDP blocked Unreachable

01-JIT_08138.indd 203 2011/3/22 下午 23:01:56

Journal of Internet Technology Volume 12 (2011) No.2204

mapping, address and port dependent filtering NAT. The
SIP UA determines its network environment with the
following steps.

 Send the 1st TEST1
 request to server a 1:p1

Mapped address
is local address ?

TEST1 succeed?
No

 Send the 2nd TEST1
request to server a 2:p1

TEST2 succeed?

 Send TEST2 request
 to server a 1:p1

Same mapped
address (1st and

2nd)?

 Send TEST2 request
 to server a 1:p1

TEST2 succeed?

 Send TEST3 request
 to server a 1:p1

TEST3 succeed?

Yes

a

b

c

d f

e g

h

i

j

k

NoYes

Yes

No

NoYes

NoYes

No

Yes

(D)
Endpoint independent

mapping , address
dependent filtering

(E)
Endpoint independent

mapping , address
and port dependent

filtering

Start

(B)
No address mapping ,

address and port
dependent filtering

(F)
Endpoint dependent
mapping , address

and port dependent
filtering

(C)
Endpoint independent
mapping , no filtering

(G)
Unreachable

(A)
No address mapping ,

no filtering

Figure 6 RFC 3489 Approach

Step 1: The client performs a TEST1 test by sending a
TEST1 request through the NAT to the server transport
address a1:p1 (Figure 6ⓐ). The server sends back a response
from the transport address a1:p1 through the NAT to the
client. This response carries the mapped transport address
of the local transport address.
Step 2: Upon receipt of the TEST1 response (Figure 6ⓑ),
the client discovers that the carried mapped transport
address in the TEST1 response is not the local transport
address in use (Figure 6ⓒ).
Step 3: The client performs a TEST2 test by sending a
TEST2 request through the NAT to the server transport
address a1:p1 (Figure 6ⓕ). The server sends back a response
from the transport address a2:p2 which would be blocked
by the NAT (because of the address and port dependent
filtering behavior).
Step 4: After the retransmission procedure, the TEST2
test fails (Figure 6ⓖ). The client then performs a second
TEST1 test by sending a TEST1 request through the NAT
to another server transport address a2:p1 (Figure 6ⓗ). The
server sends back a response from the transport address
a2:p1 through the NAT to the client. This response also
carries the mapped transport address of the local transport
address.

Step 5: Upon receipt of the second TEST1 response (Figure
6ⓘ), the client discovers that the carried mapped transport
address in this response is the same as that one obtained in
the previous TEST1 response (in Step 2).
Step 6: The client performs a TEST3 test by sending a
TEST3 request through the NAT to the server transport
address a1:p1 (Figure 6ⓙ). The server sends back a response
from the transport address a1:p2, which would be blocked
by the NAT (because of the address and port dependent
filtering behavior).
Step 7: After the retransmission procedure, the TEST3 test
fails (Figure 6ⓚ). The client then discovers that it is in a
private network behind an endpoint independent mapping,
address and port dependent filtering NAT (Figure 6 [E]).

In the example above, the client needs to wait for the
latency of two retransmission procedures (in Step 4 and
Step 7) which may cause unacceptable interruption for
VoIP applications. Imagine a SIP UA running on a mobile
device, when it hands over from its home network to a
visited network behind an endpoint independent mapping,
address and port dependent filtering NAT. If the SIP UA
has to wait for a long time to discover its current network
environment before it can resume the media transmission, it
will cause an unacceptable long interruption.

4.2	 Vovida Approach
To reduce the overall delay, Vovida improved the RFC

3489 approach by running some tests in parallel. Figure 7
shows the flowchart of the Vovida approach where several
tests (i.e., the TEST1 test in Figure 6ⓐ, the TEST2 test in
Figure 6ⓓ and ⓕ, and the TEST3 test in Figure 6ⓙ) all run
in parallel (i.e., Figure 7ⓐ). Unlike the RFC 3489 approach
that runs the tests sequentially, the Vovida approach runs
all tests at the beginning and then discover NAT behaviors
according to the results.

In this approach, the TEST1 test in Figure 7ⓒ is the
same as the one in Figure 6ⓗ. This test (the second TEST1
test) can not be run at the beginning with the other three
tests in Figure 7ⓐ because the STUN client only knows one
transport address of the STUN server (e.g., a1:p1; obtained
through domain name system or dynamic host configuration
protocol). The other transport addresses of the STUN server
is learned by the STUN client after receiving a response
from the STUN server in Figure 7ⓑ. In Figure 7ⓒ, the
client may also retransmit TEST2 requests and TEST3
requests to the server if these tests have not succeeded. If
one of the TEST2 or TEST3 tests is not finished, the NAT
behavior discovery logic will not advance to Figure 7ⓕ.

The flowchart of this approach is very similar to that of
the RFC 3489 approach, so we do not elaborate the details
here.

01-JIT_08138.indd 204 2011/3/22 下午 23:01:56

205A Survey of NAT Behavior Discovery in VoIP Applications

 Send the 1st TEST1
Request to server a 1:p1;
 Send TEST2 request
 to server a 1:p1;
 Send TEST3 request
 to server a 1:p1;

Mapped address
is local address?

TEST1 succeed?

 Send the 2nd TEST1
request to server a 2:p1

(retransmit TEST2
requests and TEST 3
requests if needed)

TEST2 succeed?

TEST3 succeed?

TEST2 succeed?

Same mapped
address (1st and

2nd)?

a

b

c

d

e f

g

h

No

Yes

NoYes

NoYes

No

Yes

No

Yes

No

Yes

Start

(D)
Endpoint independent

mapping , address
dependent filtering

(E)
Endpoint independent

mapping , address
and port dependent

filtering

(B)
No address mapping ,

address and port
dependent filtering

(F)
Endpoint dependent
mapping , address

and port dependent
filtering

(C)
Endpoint independent
mapping , no filtering

(G)
Unreachable

(A)
No address mapping ,

no filtering

Figure 7 Vovida Approach

4.3	 BEHAVE Approach
The logic of NAT behavior determination in the

BEHAVE approach is similar to the previous two
approaches (which are based on TEST1, TEST2 and
TEST3). However, unlike the RFC 3489 approach and
the Vovida approach that discover the address mapping
behaviors of NATs along with the packet filtering
behaviors, the BEHAVE approach decouples the discovery
of these two behaviors into two procedures. The flowchart
of the BEHAVE approach is shown in Figure 8 where the
discovery of address mapping and packet filtering behaviors
are illustrated in Figure 8(a) and Figure 8(b), respectively.
The separation of these two procedures enables STUN
clients to discovery the behaviors of address mapping
or packet filtering independently, without unrequited
overhead. For example, when a STUN client only wants to
know the address mapping behavior, it can simply execute
the address mapping behavior discovery procedure (Figure
8[a]) to avoid the overhead of packet filtering behavior
discovery (Figure 8[b]). If a STUN client intends to use the
BEHAVE approach to discover both the address mapping
and packet filtering behaviors, it could combine the two
procedures in Figure 8(a) and Figure 8(b) to reduce the
overhead [13]. Details are not elaborated here.

 Send the 2nd TEST1
 request to server a 2:p1

 Send the 1st TEST1
 request to server a 1:p1

TEST1 succeed?

Mapped address
is local address?

Same mapped
address (1st and

2nd)?

No

Yes

NoYes

NoYes

Start

(A)
No address mapping

(E)
Unreachable

(C)
Endpoint (address)
dependent mapping

(B)
Endpoint independent

mapping

(D)
Endpoint (address

and port) dependent
mapping

 Send the 3rd TEST1
 request to server a 2:p2

Same mapped
address (2nd and

3rd)?

NoYes

a

b

c

e

d

f

g

(a) Discovery of Address Mapping Behavior

 Send TEST2 request
 to server a 1:p1

 Send TEST1 request
 to server a 1:p1

TEST1 succeed?

TEST2 succeed?

No

Yes

Yes

Start

Unreachable

Address dependent
filtering

Endpoint independent
filtering

Address and port
dependent filtering

 Send TEST 3 request
 to server a 1:p1

TEST3 succeed?
NoYes

No

(b) Discovery of Packet Filtering Behavior
Figure 8 BEHAVE Approach

01-JIT_08138.indd 205 2011/3/22 下午 23:01:56

Journal of Internet Technology Volume 12 (2011) No.2206

5 NAT Behavior Discover in VoIP
Applications

For VoIP applications (e.g., SIP UAs) to traverse NAT,
discovery of the packet filtering behaviors in their current
network environments is unnecessary. Because SIP UAs
are required to keep alive the address binding on NATs
for receiving inbound SIP signaling messages, they need
to send packets periodically to their peers to refresh the
address binding timer. This behavior forces SIP UAs to
send outbound packets prior to inbound packets, and helps
to conquer the obstacles of firewalls and the packet filtering
behaviors of NATs.

Besides the address mapping behaviors and packet
filtering behaviors, a NAT has several other behaviors like
address mapping refresh behaviors, hairpin behaviors,
packet fragmentation behaviors and so on. The discovery
of these behaviors is minor for VoIP applications compared
with the discovery of the address mapping behaviors. For
a SIP UA, the most important information is a suitable
transport address to be inserted into its application level
messages for connection setup.

By using STUN to discover the presence and behaviors
of NAT, SIP devices (especially those that have implemented
STUN but have not implemented ICE) are able to traverse
NAT. The SIP UAs can utilize this information along with
STUN and its extension (TURN) to handle NAT traversal.
As shown in Table 1, the BEHAVE-compliant NATs
support hairpinning and their address mapping behaviors
are endpoint independent. These behaviors can be handled
by STUN without relays. Although the STUN document
specifies it to be merely a tool as part of other NAT
traversal solutions, STUN is useful enough to handle the
traversal of BEHAVE-compliant NATs without bottleneck
effect or non-optimal routing path problem suffered by
TURN. Since more and more NAT products are going to be
(or have already been) BEHAVE-compliant NATs, if SIP
devices are administrated within a specific domain (e.g.,
3G cellular networks) and the NAT devices in this domain
are all BEHAVE-compliant, then these SIP devices can
use STUN as a standalone NAT traversal solution without
any problems. Moreover, many existing SIP devices have
implemented STUN, vendors may choose to upgrade their
SIP devices with NAT behavior discovery to lower down
the cost, rather than straightforwardly implementing the
complicated ICE solution on their SIP devices.

We propose a simplified approach for NAT behavior
discovery in this scenario. This approach is based on the
BEHAVE approach, and its flowchart is shown in Figure
9. It is simpler than the previous three approaches because
it only considers the address mapping behaviors and its
outputs are more meaningful and more suitable for VoIP

applications. Because of the simplification, the proposed
approach can reduce the call establishment time of VoIP
applications, and therefore the proposed approach is more
suitable for VoIP applications compared with the other three
approaches. The differences between this approach and the
previous approaches are described below.
1.	This approach does not intend to discover the filtering

behaviors in the network.
2.	This approach combines equivalent outputs of previous

approaches, i.e., the three outputs in Figure 6 (C), (D),
and (E) (or Figure 7[C], [D], and [E]) are combined into
a single output: endpoint independent mapping (Figure
9[B]); and the two outputs in Figure 8(a), (C) and (D)
are combined into a single output: endpoint dependent
mapping (Figure 9 [C]).

3.	This approach reduces the complexity of the previous
three approaches. It uses only two TEST1 tests (Figure
9 a and d) to determine the address mapping behaviors.
Compared with the previous two approaches that need at
most four tests to determine the behaviors of a NAT (i.e.,
two TEST1 tests plus a TEST2 and a TEST3 test for the
outputs in Figure 6 [D] and [E]), this approach is simpler.

 Send the 2nd TEST1
 request to server a 2:p1

 Send the 1st TEST1
 request to server a 1:p1

TEST1 succeed?

Mapped address
is local address?

Same mapped
address (1st and

2nd)?

a

b

c

e

No

Yes

NoYes

NoYes

d

Start

(A)
No address mapping

(D)
Unreachable

(C)
Endpoint dependent

mapping

(B)
Endpoint independent

mapping

Figure 9 NAT Behavior Discovery in VoIP Applications

To prevent unnecessary using STUN servers as traffic
relays, a SIP UA needs to determine whether to activate
TURN or not. In other words, the SIP UA has to detect
the address mapping behavior of the NAT to see if it is
endpoint dependent mapping. If the SIP UA discovers an
endpoint independent mapping NAT, then it can simply use
STUN to traverse the NAT. Otherwise it must use TURN.
Table 3 summarizes possible network environments for a
SIP UA (only network translation behaviors are highlighted,

01-JIT_08138.indd 206 2011/3/22 下午 23:01:56

207A Survey of NAT Behavior Discovery in VoIP Applications

while firewalls and the filtering behaviors of NATs are
not considered here because they are not significant as
described in the previous paragraphs).

Table 3 Network Environments and the Corresponding NAT
Traversal Techniques

Network environments NAT traversal techniques
No address mapping None

Endpoint independent mapping STUN
Endpoint dependent mapping TURN

6 Cost Analyses

We analyze the cost of these approaches in discovering
the NAT address mapping behavior. The analysis
environment is a simple STUN configuration as shown in
Figure 5. These approaches are independent of the RTP
traffic because they are executed before the establishment
of VoIP calls, and therefore the performance metrics
used here are total execution time and count of generated
packets.

6.1	 Parameters and Basic Derivations for Analytical
Modeling
In VoIP applications, STUN tests are transmitted above

UDP which does not support reliable packet transportation.
If the STUN client does not receive a response from the
STUN server for its transmitted test packet, it retransmits
the test packet when the retransmission timer expires. The
average delay for a failed test, Ttimeout, needs to wait until the
retransmission procedure is completed, so it will be equal
to the total latency of the retransmission procedure.

where N is the number of trials for a test, and Ti is the
retransmission timer value of the i-th transmission trial. In
the STUN protocol, Ti is an exponentially grown value:

where ∆ is the initial value, γ is the growth factor, and m is
the boundary of growth. The average delay for a successful
test, Tresponse, is

where TRTT is the round-trip time between then STUN client
and STUN server, pi is the probability that the STUN client
successfully gets the response from the STUN server in the
i-th transmission trial. pi can be computed by:

where p is the packet loss rate.
Similarly, the count of generated packets of a failed

test, Ctimeout, suffers the whole retransmission procedure, and
its average value is

The average count of generated packets for a successful
test, Cresponse, is

In the STUN protocol, the default parameters are: N =
7, ∆ = 500ms, γ = 2, and m = 6 (which implies T1 = 500ms,
T2 = 1000ms, T3 = 2000ms, T4 = 4000ms, T5 = 8000ms, T6 =
16000ms, T7 = 8000ms). We can foresee that Ttimeout = 39.5
seconds which is unacceptable for VoIP applications.

6.2	 Total Execution Time
The total execution time needed for these approaches

is divergent because each of them utilizes a different
algorithm to discover a network environment. For example,
when the NAT behavior is endpoint independent mapping,
address and port dependent filtering, the RFC 3489
approach needs to perform four tests (Figure 6ⓐ, ⓕ, ⓗ and
ⓙ) and it requires the latency of two failed tests (Figure
6ⓕ and ⓙ) plus the latency of two successful tests (Figure
6ⓐ and ⓗ). However, in the same environment, the total
execution time required for the Vovida approach is the
latency of one failed test or two successful tests (Figure 7ⓐ
and ⓒ; the reason will be elaborated in the next paragraph),
while the total execution time required for the BEHAVE
approach and the proposed approach is the latency of two
successful tests (Figure 8(a) ⓐ and ⓓ, and Figure 9ⓐ and
ⓓ, respectively).

Suppose TRTT = 50ms and loss rate p = 0 (which
means that all requests/responses arrive at the destination
successfully), the total execution time of these approaches
is shown in Figure 10. Note that the Vovida approach

01-JIT_08138.indd 207 2011/3/22 下午 23:01:57

Journal of Internet Technology Volume 12 (2011) No.2208

performs tests in parallel, and therefore its total execution
time is

max{latency of TEST2, latency of TEST3,
latency of TEST1+latency of another TEST1}

= max{Ttimeout, 2Tresponse}

In other words, its latency is either 2Tresponse if the
three tests in Figure 7ⓐ are successful, or Ttimeout if any
one of the three tests in Figure 7ⓐ fails. Among these
approaches, the proposed approach is faster than the other
approaches in any case. The Vovida approach has similar
execution latency for every network environments (which
is caused by the parallel process execution), and the RFC
3489 approach needs longest execution time for almost all
network environments.

0.01

0.1

1

10

100

No address
mapping, no

filtering

No address
mapping,

address and port
dependent
filtering

Endpoint
independent
mapping, no

filtering

Endpoint
independent

mapping,
address

dependent
filtering

Endpoint
dependent
mapping,

address and port
dependent
filtering

Endpoint
(address)
dependent
mapping

Endpoint
(address and

port) dependent
mapping

Unreachable

Network environments

E
xe

cu
ti

on
 ti

m
e

(s
ec

on
ds

)

RFC 3489 Vovida BEHAVE Proposed

Figure 10 Total Execution Time Comparison (p = 0)

6.3	 Count of Generated Packets
Suppose p = 0, two packets will be delivered between

the STUN client and the STUN server (one for request and
one for response) for a successful test and 14 packets are
generated for a failed test. The packet count comparison
between these approaches is shown in Figure 11. Among
these approaches, the proposed approach generates fewer
packets than the other approaches in any case. The Vovida
approach generates the most packets because of its parallel
characteristic.

0

10

20

30

40

50

60

No address
mapping, no

filtering

No address
mapping,

address and port
dependent
filtering

Endpoint
independent
mapping, no

filtering

Endpoint
independent

mapping,
address

dependent
filtering

Endpoint
dependent
mapping,

address and port
dependent
filtering

Endpoint
(address)
dependent
mapping

Endpoint
(address and

port) dependent
mapping

Unreachable

Network environments

C
ou

nt
 o

f g
en

er
at

ed
 p

ac
ke

ts

RFC 3489 Vovida BEHAVE Proposed

Figure 11 Packet Count Comparison (p = 0)

From the analyses of total execution time (Figure 10)
and count of generated packets (Figure 11), we observed
that the RFC 3489 approach has longer execution time and
it needs to generate a lot of packets to discover the network
environments, and the Vovida approach has to generate a lot
of test packets because it launches parallel tests in Figure
7ⓐ and ⓒ. Compared with these approaches, the proposed
approach is more efficient in most cases.

We further run these approaches in an experimental
environment to measure their performance. The
experimental results are very close to the analytical results
above so we omit them here.

From the analyses in Sections 6, we know that the total
execution time and count of generated packet of a NAT
behavior discovery approach are dominated by Ttimeout and
Ctimeout, respectively. The proposed approach is superior to
the other three approaches in any case whatever the loss
rate p is, because it requires less Ctimeout or Ttimeout.

7 Conclusion

In wireless network deployment, NAT is commonly
adopted to allow multiple devices accessing the Internet
with only a public IP address. This paper presents the
NAT issues of VoIP applications, and introduces the
current solutions for user applications to traverse NATs.
We surveyed the divergent NAT behaviors and the IETF
requirements for NAT devices. Moreover, we described
how to utilize STUN to discover the behavior of the NATs,
especially the BEHAVE-compliant NATs. We also proposed
a simplified NAT behavior discovery approach for VoIP
applications. The proposed approach is useful in scenarios
where VoIP devices are administrated within a specific
domain, e.g., 3G cellular networks.

References

[1]	 Pyda Srisuresh and Kjeld Borch Egevang, Traditional
IP Network Address Translator (Traditional NAT),
January, 2001. IETF RFC 3022.

[2]	 Kjeld Borch Egevang and Pyda Francis, The IP
Network Address Translator (NAT), May, 1994. IETF
RFC 1631.

[3]	 Whai-En Chen, Ya-Lin Huang and Han-Chieh Chao,
NAT Traversing Solutions for SIP Applications,
Journa l on Wire l e s s Communica t ions and
Networking, Vol.2008, No.4, 2008, pp.1-9.

[4]	 Wen-Sung Chen and Wen-Kang Jia, An IP Shared
Device Based on the Network Port Translation,
Journal of Internet Technology, Vol.7, No.1, 2006,
pp.85-93.

01-JIT_08138.indd 208 2011/3/22 下午 23:01:57

209A Survey of NAT Behavior Discovery in VoIP Applications

[5]	 Stephen E. Deering and Robert M. Hinden, Internet
Protocol, Version 6 (IPv6) specification, December,
1998. IETF RFC 2460.

[6]	 Victor Paulsamy and Samir Chatterjee, Network
Convergence and the NAT/Firewall problems, Proc.
36th Hawaii International Conference on System
Sciences, Waikoloa, HI, January, 2003, p.125c.

[7]	 Samir Chatterjee, Tarun Abhichandani, Bengisu Tulu
and Haiqing Li, SIP-Based Enterprise Converged
Networks for Voice/Video-Over-IP: Implementation
and Evaluation of Components, IEEE Journal on
Selected Area in Communications, Vol.23, No.10,
2005, pp.1921-1933.

[8]	 Hechmi Khlifi, Jean-Charles Grégoire and James
Phillips, VoIP and NAT/Firewalls: Issues, Traversal
Techniques, and a Real-World Solution, IEEE
Communications Magazine, Vol.44, No.7, 2006.
pp.93-99.

[9]	 Chris Boulton, Jonathan Rosenberg, Gonzalo
Camarillo and Francois Audet, Best current practices
for NAT traversal for client-server SIP, February,
2011. IETF Internet Draft (Work in Progress), draft-
ietf-sipping-nat-scenarios-15.

[10]	 Jonathan Rosenberg, Henning Schulzrinne, Gonzalo
Camarillo, Alan Johnston, Jon Peterson, Robert
Sparks, Mark Handley and Eve Schooler, SIP:
Session Initiation Protocol, June, 2002. IETF RFC
3261.

[11]	 Henning Schulzrinne, Anup Rao and Robert Lanphier,
Real Time Streaming Protocol (RTSP), April, 1998.
IETF RFC 2326.

[12]	 Shiang-Ming Huang, Quincy Wu and Yi-Bing Lin,
Enhancing teredo IPv6 tunneling to traverse the
symmetric NAT, IEEE Communications Letters,
Vol.10, No.5, 2006, pp.408-410.

[13]	 Derek C. MacDonald and Bruce B. Lowekamp, NAT
behavior discovery using STUN, May, 2010. IETF
RFC 5780.

[14]	 Bryan Ford, Pyda Srisuresh and Dan Kegel, Peer-
to-Peer Communication Across Network Address
Translators, Proc. 2005 USENIX Annual Technical
Conference, Anaheim, CA, April, 2005, pp.179-192.

[15]	 Pyda Srisuresh, Bryan Ford and Dan Kegel, State of
Peer-to-Peer (P2P) Communication across Network
Address Translators (NATs), March, 2008. IETF RFC
5128.

[16]	 Geoff Huston, Anatomy: A Look Inside Network
Address Translators, The Internet Protocol Journal,
Vol.7, No.3, 2004, pp.2-32.

[17]	 Jonathan Rosenberg, Interactive Connectivity
Establishment (ICE): A protocol for Network
Address Translator (NAT) traversal for offer/answer
protocols, April, 2010. IETF RFC 5245.

[18]	 Francois Audet and Cullen Jennings, Network
Address Translation (NAT) behavioral requirements
for unicast UDP, January, 2007. IETF RFC 4787.

[19]	 Saikat Guha, Kaushik Biswas, Bryan Ford, Senthil
Sivakumar and Pyda Srisuresh, NAT behavioral
requirements for TCP, October, 2008. IETF RFC
5382.

[20]	 Pyda Srisuresh, Bryan Ford, Senthil Sivakumar and
Saikat Guha, NAT behavioral requirements for ICMP,
April, 2009. IETF RFC 5508.

[21]	 Dan Wing and Toerless Eckert, IP multicast
requirements for a Network Address Translator (NAT)
and a Network Address Port Translator (NAPT),
February, 2008. IETF RFC 5135.

[22]	 Jonathan Rosenberg, Joel Weinberger, Christian
Huitema and Rohan Mahy, STUN -- Simple Traversal
of User Datagram Protocol (UDP) through Network
Address Translators (NATs), March, 2003. IETF RFC
3489.

[23]	 Vovida’s STUN Client and Server Library, http://
www.vovida.org/applications/downloads/stun/

[24]	 Universal Plug and Play (UPnP), http://www.upnp.
org

[25]	 Henrik Levkowetz and Sami Vaarala, Mobile IP
traversal of Network Address Translation (NAT)
devices, April, 2003. IETF RFC 3519.

[26]	 Jani Hautakorpi, Gonzalo Camarillo, Robert F.
Penfield, Alan Hawrylyshen and Medhavi Bhatia,
Requirements from Session Initiation Protocol (SIP)
Session Border Control (SBC) deployments, April,
2010. IETF RFC 5853.

[27]	 Whai-En Chen, Quincy Wu, Yi-Bing Lin and Yung-
Chieh Lo, Design of SIP Application Level Gateway
for IPv6 Translation, Journal of Internet Technology,
Vol.5, No.2, 2004, pp.147-154.

[28]	 Michael Borella, David Grabelsky, Jeffrey Lo and
Kunihiro Taniguchi, Realm specific IP: Protocol
specification, October, 2001. IETF RFC 3103.

[29]	 Pyda Srisuresh, Jiri Kuthan, Jonathan Rosenberg,
Andrew Molitor and Abdallah Rayhan, Middlebox
communication architecture and framework, August,
2002. IETF RFC 3303.

[30]	 Marcus Leech et al, SOCKS protocol version 5,
March, 1996. IETF RFC 1928.

[31]	 Jonathan Rosenberg and Henning Schulzrinne, An
extension to the Session Initiation Protocol (SIP) for
symmetric response routing, August, 2003. IETF RFC
3581.

[32]	 Jonathan Rosenberg, Rohan Mahy, Philip Matthews
and Dan Wing, Session Traversal Utilities for NAT
(STUN), October, 2008. IETF RFC 5389.

01-JIT_08138.indd 209 2011/3/22 下午 23:01:57

Journal of Internet Technology Volume 12 (2011) No.2210

[33]	 Rohan Mahy, Philip Matthews and Jonathan
Rosenberg, Traversal Using Relays around NAT
(TURN): Relay extensions to Session Traversal
Utilities for NAT (STUN), April, 2010. IETF RFC
5766.

[34]	 Leslie Daigle (Ed.) , IAB considerations for
UNilateral Self-Address Fixing (UNSAF) across
network address translation, November, 2002. IETF
RFC 3424.

[35]	 Cullen Jennings, Rohan Mahy and Francois Audet
(Eds.), Managing client initiated connections in the
Session Initiation Protocol (SIP), October, 2009,
IETF RFC 5626.

[36]	 Jonathan Rosenberg, Ari Keranen, Bruce B.
Lowekamp and Adam Roach, TCP candidates
with Interactive Connectivity Establishment (ICE),
February, 2011. IETF Internet Draft (Work in
Progress), draft-ietf-mmusic-ice-tcp-12.

[37]	 Mark Handley and Van Jacobson, SDP: Session
description protocol, April, 1998. IETF RFC 2327.

Biographies

Shiang-Ming Huang was born in Taiwan.
He is currently working towards his PhD
degree in Computer Science at National
Chiao Tung University, Taiwan.

Quincy Wu received his BS degree
in Mathematics from National Tsing
Hua University in 1992, and his PhD
in Computer Science and Information
Engineering from National Tsing Hua
University in 2000. He joined National
Center for High-Performance Computing

with the NBEN (National Broadband Experimental
Network) project, where he successfully designed and
established the first island-wide IPv6 network among
universities in Taiwan. In 2003, he began serving as a
research assistant professor with National Chiao Tung
University, and helped National Telecommunications
Program Office to deploy a SIP-based VoIP Platform across
several universities. Since 2004, he co-chairs the SIP-H323
Working Group of Asia-Pacific Advanced Network
(APAN) and helped Taiwan Academic Network (TANet) to
design and deploy VoIP services. He was appointed as an
assistant professor of Graduate Institute of Communication
Engineering, National Chi Nan University (NCNU) in

2005 and helped initiating the VoIP over WiMAX project
in NCNU. In 2007, he was elected as the chairman of the
SIP-H323 Working Group of APAN and helps coordinating
the VoIP activities in Asia-Pacific academic networks. In
2009, he was promoted as an associate professor in NCNU
and elected as the division head of the Network Division
of Nantou Regional Center in TANet. His current research
interests include session initiation protocol (SIP), open
service architecture, Internet protocol version 6 (IPv6),
design and analysis of approximation algorithms, wireless
mesh network, and advanced metering infrastructure (AMI)
in Smart Grid.

01-JIT_08138.indd 210 2011/3/22 下午 23:01:58

