
 1

SIP Terminal Mobility for both IPv4 and IPv6

Che-Hua Yeh1, Quincy Wu2, and Yi-Bing Lin1
1 Department of Computer Science & Information Engineering,

National Chiao Tung University
{chyei, liny}@csie.nctu.edu.tw

2 Graduate Institute of Communication Engineering,
National Chi Nan University

solomon@ipv6.club.tw

Abstract

Session Initiation Protocol (SIP) supports
application layer mobility during a session. In this
paper the architecture design on the protocol stack
implementation of SIP terminal mobility is described,
and the performance of SIP user agents developed with
open-source libraries are measured from empirical
experiments. The experiments are performed in both
IPv4 and IPv6 environment. In the best case, the delay
of SIP mobility only takes 38ms in SIP signaling
exchange, for both IPv4 and IPv6. Therefore, SIP
mobility is suitable for supporting seamless handover
in VoIP communications.

Keyword: IPv4, IPv6, Handover, SIP Mobility, VoIP

1. Introduction

Session Initiation Protocol (SIP) is an application-
layer signaling protocol for Internet multimedia session
establishment, modification, and termination [1]. SIP
supports four types of mobility, i.e. terminal mobility,
session mobility, personal mobility, and service
mobility [2]. Terminal mobility is the capability to
keep a session alive after the terminal device moves to
a different IP subnet. Session mobility is the capability
to maintain a session while the user is changing the
terminal device. Personal mobility allows a user to
become reachable at different terminal devices by the
same logical address. Service mobility is the capability
to access the user’s services (e.g. address book, speed
dialing, buddy lists) while the user is moving or
changing devices and network service providers. In
this paper we focus on SIP terminal mobility and
propose a software architecture to implement this
capability in a SIP User Agent. The empirical
measurements (in both IPv4 and IPv6) show the SIP
mobility performance for real-time multimedia
applications, especially voice over IP (VoIP).

MH

(Network B)
MH

(Network A) CH

MH moves from Network A
to Network B

Step 1. re-INVITE

Step 2. 200 OK

Step 3. ACK

Step 4. Media Session

SIP session

Figure 1. SIP terminal mobility procedure

Figure 1 illustrates the flow of SIP terminal

mobility procedure. In the figure, the Mobile Host
(MH) and the Correspondent Host (CH) are SIP User
Agents (UAs). The MH will move from Network A to
Network B. Suppose that Network A assigns an IP
address 140.113.214.108 to the MH. Then a SIP
multimedia session can be established between the MH
and the CH, by following the standard SIP call setup
procedure (INVITE/ 200 OK/ ACK) as described in
[1]. In this procedure an INVITE message is sent
between the MH and the CH. The INVITE message
with the Session Description Protocol (SDP) content is
shown in Table 1(a). Now, let us consider the scenario
with mobility support. During the SIP multimedia
session, the MH moves from Network A to Network B
and acquires a new IP address 140.113.131.72 at
Network B. Then the following steps are executed.

 2

Table 1. SIP INVITE message and re-INVITE
message

INVITE sip:944021117@sip.ipv6.club.tw SIP/2.0
Via: SIP/2.0/UDP 140.113.214.108:5060;branch=z9hG4bK6608
From: <sip:chyei@sip.ipv6.club.tw>;tag=8653
To: <sip:944021117@sip.ipv6.club.tw>
Call-ID: 7557@140.113.214.108
CSeq: 20 INVITE
Contact: <sip:chyei@140.113.214.108:5060>
Max-Forwards: 5
User-Agent: Lab117-PoC-VoIP-UA/0.0.1
Subject: test
Expires: 120
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, REFER,
 SUBSCRIBE, NOTIFY, MESSAGE
Content-Type: application/sdp
Content-Length: 217

v=0
o=userX 20000001 20000001 IN IP4 140.113.214.108
s=A call
c=IN IP4 140.113.214.108
t=0 0
m=audio 9000 RTP/AVP 0 8 18 3
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729/8000
a=rtpmap:3 GSM/8000

(a) INVITE

(b) re-INVITE

INVITE sip:944021117@sip.ipv6.club.tw SIP/2.0
Via: SIP/2.0/UDP 140.113.131.72:5060;branch=z9hG4bK41
From: <sip:chyei@sip.ipv6.club.tw>;tag=8653
To: <sip:944021117@sip.ipv6.club.tw>;tag=10651
Call-ID: 7557@140.113.214.108
CSeq: 21 INVITE
Contact: <sip:chyei@140.113.131.72:5060>
Max-Forwards: 5
User-Agent: Lab117-PoC-VoIP-UA/0.0.1
Subject: test
Content-Type: application/sdp
Content-Length: 217

v=0
o=userX 20000001 20000002 IN IP4 140.113.131.72
s=A call
c=IN IP4 140.113.131.72
t=0 0
m=audio 9000 RTP/AVP 0 8 18 3
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729/8000
a=rtpmap:3 GSM/8000

1

1

2

2

3

3

SIP
headers

SDP
content

SIP
headers

SDP
content

Step 1. The MH sends a SIP re-INVITE request to

the CH. The format of the re-INVITE message is
shown in Table 1(b). Note that the headers “From”,
“To”, and “Call-ID” must be the same as those in the
INVITE message (see Table 1 (1)). The Contact header
field is updated to the MH’s new IP address (from
140.113.214.108 to 140.113.131.72; see Table 1 (2)).
The Contact header field provides the address that can
be used to contact the SIP UA for subsequent requests.
A new SDP content will be included in the re-INVITE
message. Specifically, the connection address field
(“c=”) is updated to the MH’s new IP address (from
140.113.214.108 to 140.113.131.72; see Table 1 (3)).

Step 2. When the CH receives the re-INVITE

request, it replies a SIP 200 OK response to indicate

that the CH recognizes the IP address change of the
MH.

Step 3. The MH replies with a SIP ACK message to

notify the CH that it has received the SIP 200 OK
response.

Step 4. The CH modifies the session parameters

according to the new connection address in the SDP
content, and then the media data transmission is re-
established between the CH and the MH.

In the above procedure, SIP re-INVITE message is

utilized to notify the calling party to change media
transmission parameters. Table 1 shows that the format
of the SIP re-INVITE is exactly the same as SIP
INVITE. Therefore SIP terminal mobility does not
need to modify the SIP protocol or create a new SIP
method. As indicated in [3], SIP terminal mobility
supports fast handoff, low latency, and high bandwidth
utilization.

In the remainder of this paper we will elaborate the

architectural design on the protocol stack
implementation of SIP terminal mobility and compare
the performance results measured from empirical
experiments.

2. Software Architecture of a SIP User
Agent

This section describes the implementation of SIP
terminal mobility. Figure 2 illustrates the software
architecture of the SIP UA which is designed and
implemented in National Chiao Tung University
(NCTU). Figure 2 (1), (2), and (3) are open-source
libraries and application programming interfaces
(APIs). In the SIP Core module, eXtended osip
(eXosip [4]) based on the GNU osip [5] library is
utilized to implement the SIP protocol stack. The SIP
Core module supports SIP communication with other
SIP UAs. This module is invoked by the Call Control
module to execute the call setup or teardown
procedure following the standard SIP protocol. The
RTP Core module utilizes the oRTP library [6] to
implement Real-time Transport Protocol (RTP) stack
under GNU Lesser General Public License (LGPL).
This module builds RTP sessions between SIP UAs.
The User Interface module supports interfaces for
interactions between a user and the SIP UA. The Call
Control module instructs other NCTU SIP UA
modules to handle call related activities such as call
answer, call rejection, and make an outgoing call, etc.
The Multimedia Control module generates audible
tones such as the ringing tone, the ringback tone, and

 3

the busy tone to notify the user of various call status.
When a call is established, this module plays the voice
data it received from the TCP/IP module, or converts
the voice from the user and delivers it over the TCP/IP
module. The details of the above modules can be found
in [7].

User Interface module

Call Control module
Multimedia

Control module

RTP Core
module

oRTP

TCP / IP

SIP Core
module

SIP Mobility
module

eXosip IPHelper
API

NCTU SIP UA

1 2 3

Figure 2. Architecture of NCTU SIP UA

The SIP Mobility module utilizes Windows

IPHelper API with a function WSAIoctl() (WSA
prefix for Winsock API) to monitor the status of local
IP addresses of the SIP UA and control the whole
process of the SIP terminal mobility procedure.
Whenever the SIP UA detects that its IP addresses are
modified, added, or deleted, the callback function
IPChangeHandler() in SIP Mobility module will be
invoked. The detailed operations will be elaborated in
the next section.

3. Implementation of SIP Terminal
Mobility

Figure 3 illustrates the interaction between modules
of the NCTU SIP UA during the SIP terminal mobility
procedure. The steps in Figure 3 are described as
follows.

Step 1. As the SIP UA moves to a new network, the

modification of IP addresses causes IPHelper API to
trigger the event which activates the callback function
in SIP Mobility module. Through
IPChangeHandler(), SIP Mobility module retrieves
IP addresses on local host by function
GetAdaptersAddresses() in IPHelper API, and
detects that it is assigned a new IP addresses from the

network. Therefore SIP terminal mobility procedure
will be activated.

Step 2. At the startup of the NCTU SIP UA, the

eXosip library will create a UDP socket for SIP
signaling [4]. The socket is bound to the local IP
address. After the IP address is changed, the SIP
mobility module will modify this socket with the new
IP address through the function eXosip_modify_ip()
provided by the SIP Core module.

User Interface module

Call Control module
Multimedia

Control module

RTP Core
module

oRTP

TCP / IP

SIP Core
module

SIP Mobility
module

eXosip IPHelper
API

NCTU SIP UA

12

34

5

6

7

Figure 3. The process flow of SIP terminal

mobility

Step 3. After the socket in eXosip is modified, the
SIP mobility module generates an event
SIPCore_IPCHANGE_NEWIP_NOTIFY to notify
the Call Control module to execute SIP terminal
mobility procedure.

Step 4. Because the UA is involved in an ongoing

session, the Call Control module will send a SIP re-
INVITE request through the SIP Core module to the
CH.

Step 5. Meanwhile, the Call Control module

instructs the Multimedia Control module to suspend
the RTP session.

Step 6. After the UA has received the SIP 200 OK

response from the CH, it follows the standard SIP
procedure to send SIP ACK to the CH.

Step 7. The Call Control module instructs the

Multimedia Control module to resume the RTP session
at the new connection address as described in Section

 4

1. The RTP session between the UA and the CH is re-
established.

4. Performance Comparison

In [8], the delay of a SIP UA mobility was
empirically measured. Figure 4 illustrates the delay for
SIP terminal mobility procedure, which can be divided
into the following parts: D1 is the delay for switching
from one AP to another. D2 is the delay of detecting a
new router and a new IP subnet after switching AP,
where MH can detect that it has moved to a new subnet
by listening to IPv6 Router Advertisement. D3 is the
delay between when the MH activates the SIP terminal
mobility procedure and when it receives the SIP 200
OK response for SIP re-INVITE request. D4 is the
delay between when the MH activates the SIP terminal
mobility procedure and when the RTP session is
resumed again. We adopt the same notations of D1,
D2, D3, D4 as in [8] for performance measurement.

D1 and D2 are the link-layer delays, which are not

the focus of SIP terminal mobility. This paper
evaluates D3 and D4 as in [8]. In D3 and D4 under
IPv6 environment, there is a delay from Duplicate
Address Detection (DAD) process. The details of DAD
are elaborated below:

4.1 IPv6 with Duplicate Address Detection

If the MH configures its IPv6 address via stateless
address autoconfiguration [9], the stateless mechanism
allows the MH to generate its own IPv6 addresses
(referred to as the tentative address). For example, the
MH has an Ethernet card with MAC address
00:11:5B:3A:71:E8, when it moves to a subnet with
prefix 2001:238::/64, then its 48-bit MAC address will
be converted by EUI-64 process [9] to a 64-bit
interface identifier 0211:5BFF:FE3A:71E8. The IPv6
address 2001:238::0211:5BFF:FE3A:71E8 is
(temporarily) assigned to it. Since the tentative address
may be duplicated, the Duplicate Address Detection
(DAD) algorithm is activated before the MH can send
packets via this IPv6 address.

MH New Router CH

IP address changing
detected &

SIP terminal mobility
start

DAD Procedure

Router Advertisement

re-INVITE
200 OK

ACK
Media Session

SIP terminal mobility
completion
(signaling)

Media Transmission
Resumed

D3

D4

Detachment from old
AP

Attachment to new
AP

D1

D2

Figure 4. The delay of SIP terminal mobility

procedure

After generating the IPv6 address according to the

received IPv6 subnet prefix, the MH sends a Neighbor
Solicitation (NS) message on the local link. If there is
no response until timeout of a pre-determined timer,
the address will be assigned to the Ethernet card.
Otherwise a duplicate IP address is detected. Before
the DAD procedure completes, the host can not send
packet via the tentative address. Thus the DAD
procedure introduces additional delay before sending
the SIP re-INVITE request. According to [9], the delay
of DAD is 1.5 seconds in average.

Table 2 shows the delays for D3 and D4. The values

in the first row are the results of NCTU SIP UA, and
the values of the second row are the results for the SIP
UA developed by N. Nakajima, A. Dutta, S. Das and H.
Schulzrinne (NDDS) SIP UA [8].

Table 2. Delay of SIP mobility procedure in
IPv6 environment with DAD

The delay D4 from NCTU SIP UA takes 1882.6ms.

The results from NDDS SIP UA show longer delay,
4187.7ms. The possible reason which causes the longer
delay is that NDDS SIP UA was implemented with
Tcl/Tk [10], which is a higher level programming
language such that more overhead might be involved.
For the 1822.6ms delay measured in our experiment,
the DAD process takes approximately 1500ms while
the SIP terminal mobility mechanism only takes about
300ms. This clearly shows that DAD process is the

Devices Under Test D3 (ms) D4 (ms)

NCTU SIP UA 1742.1 1822.6

NDDS SIP UA 3932.2 4187.7

 5

bottleneck which causes the delay of SIP terminal
mobility. In next section we will show the results
which exclude the DAD process and compare them
with the results in IPv4 environment.

4.2 IPv4 and IPv6 without Duplicate Address
Detection

In the previous section, we compared the SIP
terminal mobility delay for NCTU SIP UA and NDDS
SIP UA under IPv6 environment. The time analysis of
each step in the mobility mechanism shows that the
DAD is the bottleneck of the whole process. To solve
this problem, it was proposed in [8] to modify the
Linux kernel to remove the DAD mechanism in IPv6
address autoconfiguration process. In our experiments,
we adopted a simpler approach by hardwiring the IPv6
address assignment in our program rather than using
autoconfiguration. This approach also demonstrates
well to exclude the DAD mechanism. In both
approaches, the total delay of SIP terminal mobility is
significantly shortened. The experimental results are
shown in Table 3.

Table 3. Delay of SIP mobility procedure in
IPv6 environment without DAD

This table shows that the delay of D4 is reduced to

217.9ms in NCTU SIP UA and 418.6ms in NDDS SIP
UA. Compared with Table 2, the delay is decreased
significantly. This experiment clearly shows that the
DAD procedure is the bottleneck which increases the
delay during the SIP terminal mobility procedure. If
we remove the DAD procedure, the delay of SIP
terminal mobility (38.8ms in NCTU SIP UA, and
161.6ms in NDDS SIP UA) is short enough to support
VoIP communication with seamless handover [11],
where shorter than 50ms of interruption in handoff is
desired for VoIP communications. However, as noted
in [8], another address configuration method must be
provided to replace the DAD procedure after it is
removed. Otherwise we can not make sure whether
there is any duplicate address existing in the same
subnet.

A comparison of the performance we measured in

IPv4 and IPv6 environments also shows interesting
results. Table 4 shows the delay of SIP terminal
mobility in IPv4 network and the results in IPv6
environment excluding DAD procedure (the same as
the first row in Table 3). In IPv4 network, there is no
DAD procedure, so the delay is short (214.4ms).

Moreover, the delay time of SIP mobility procedure in
IPv4 and IPv6 (with DAD process excluded) is very
close, either in signal completion or media resumption.

Table 4. Delay of SIP mobility procedure in
IPv4/IPv6 environment

Devices Under Test D3 (ms) D4 (ms)

NCTU SIP UA (IPv4) 38.2 214.4
NCTU SIP UA (IPv6) 38.8 217.9

5. Interoperability

In previous sections, the experiment is conducted
between the same NCTU SIP UA software. In this
section we shall show the experimental results with
other SIP UAs. We shall keep using NCTU SIP UA as
the MH, and select one SIP UA to be the CH. We have
tested several SIP UAs including softphones and
hardphones. Table 5 shows those SIP UAs and their
experimental results. NCTU SIP UA, Windows
Messenger, and X-Lite UA are sofphones. Snom200,
Cisco 7940, InnoMedia video phone, and Pingtel are
hardphones. Notice that even though the MH is always
NCTU SIP UA, the delay of D3 is quite different. The
reason is that after receiving a re-INVITE request, each
SIP UA requires different time to handle the request
and then generates the SIP 200 OK response.

From Table 5, the results of NCTU SIP UA and

Windows Messenger 5.1 are almost the same, and the
X-Lite UA is a little longer (about 11% for D4). In the
results of hardphones, the delay is obviously longer
than sofphones. We have consulted the engineers in
InnoMedia Corporation, and they believe that it is
caused by the time spent on SDP parsing in the
protocol stack. Because InnoMedia video phone
includes video transmission during SIP conversation,
the SDP contains video media description. Therefore
this extra complexity increases the delay slightly. We
also perform the same experiment on CISCO 7940 SIP
hardphones with different firmware version. In
firmware version 7.5, the delay of sending 200 OK
response is more than that in firmware version 6.3. The
reason is that it applies more rigorous rules in checking
the SDP contents. For example, in firmware version
7.5 when the re-INVITE is received, the SDP version
in session identifier field (the third field in the “o=”
line) must be verified to see whether it is incremented
by 1. Certainly this increases the delay, too.

Table 5. Delay of SIP terminal mobility between

NCTU SIP UA and other SIP UAs

Devices Under Test D3 (ms) D4 (ms)
NCTU SIP UA 38.8 217.9

NDDS SIP UA 161.6 418.6

 6

6. Summary

In this paper the protocol architecture design and
implementation of the SIP terminal mobility are
illustrated. Empirical measurements show that, the
delay of the SIP terminal mobility in IPv6 environment
is about 1822.6ms. However, if DAD is excluded, the
delay is significantly reduced to 217.9ms. We also
perform the experiments in IPv4 environment.
Comparing the two results, it is interesting to notice
that the delay of SIP terminal mobility in IPv6
environment without the DAD process is close to that
in IPv4 environment. Obviously the delay from the
DAD process is the bottleneck in the SIP terminal
mobility procedure.

Moreover, the interoperability testing of terminal
mobility among SIP UAs is demonstrated. It can be
seen that the delay of SIP terminal mobility does not
depend only on the MH, but also on the CH. Because
each SIP UA sends a SIP 200 OK response after

receiving a re-INVITE request, the delay time differs
divergently. According to the information provided by
the manufacturer, one of the major factors is the
complexity required in processing the SIP header and
SDP contents.

7. References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler , “SIP:
Session Initiation Protocol”, IETF RFC 3261 , June 2002.

[2] H. Schulzrinne and E. Wedlund, “Application-layer
mobility using SIP”, ACM SIGMOBILE Mobile Computing
and Communications Review, Vol. 4, Number 3, pp.47-57,
July 2000.

[3] E. Wedlund and H. Schulzrinne, “Mobility support using
SIP”, in Second ACM/IEEE International Conference on
Wireless and Mobile Multimedia (WoWMoM’99), August
1999.

[4] The eXtended osip library, http://savannah.nongnu.org/
projects/exosip/

[5] GNU oSIP library, http://www.gnu.org/software/osip/

[6] oRTP – a Real-time Transport Protocol stack under
LGPL, http://linphone.org/ortp/

[7] L.-Y. Wu, M.-H. Tsai, Y.-B. Lin, and R.-S. Yang, “A
Client-Side Design and Implementation for Push to Talk over
Cellular Service”. Accepted and to appear in Wireless
Communications and Mobile Computing Journal.

[8] N. Nakajima, A. Dutta, S. Das, and H. Schulzrinne,
“Handoff Delay Analysis and Measurement for SIP based
Mobility in IPv6”, IEEE International Conference on
Computers and Communications, 2003.

[9] S. Thomson and T. Narten, “IPv6 stateless address
autoconfiguration”, IEEE RFC 2462, December 1998.

[10] Tcl/Tk, http://www.tcl.tk/

[11] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne,
“Reducing MAC layer handoff latency in IEEE 802.11
wireless LANs”, International Conference on Mobile
Computing and Networking, 2004.

Devices Under Test D3 (ms) D4 (ms)

Media
resumption
delay (D4)

compared to
NCTU SIP UA

NCTU SIP UA
(IPv4)
Ver1.1

38.2 214.4 100%

Windows Messenger
Ver5.1.0680 38.2 214.3 99.95%

X-Lite UA
Ver2.0 build 1103 50.2 238.4 111.19%

Snom 200
(hardphone)

Ver1.16x 4904
94.8 270.9 126.35%

Cisco 7940
(hardphone)

Ver5.3
151.3 340.2 158.68%

Cisco 7940
(hardphone)

Ver7.5
230.2 404.4 188.62%

InnoMedia
(hardphone)
Ver2.4.17

173.1 356.1 166.09%

Pingtel
Ver2.1.11.24 195.0 370.6 172.85%

