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Abstract 
 

Session Initiation Protocol (SIP) supports 
application layer mobility during a session. In this 
paper the architecture design on the protocol stack 
implementation of SIP terminal mobility is described, 
and the performance of SIP user agents developed with 
open-source libraries are measured from empirical 
experiments. The experiments are performed in both 
IPv4 and IPv6 environment. In the best case, the delay 
of SIP mobility only takes 38ms in SIP signaling 
exchange, for both IPv4 and IPv6. Therefore, SIP 
mobility is suitable for supporting seamless handover 
in VoIP communications. 
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1. Introduction 
 

Session Initiation Protocol (SIP) is an application-
layer signaling protocol for Internet multimedia session 
establishment, modification, and termination [1]. SIP 
supports four types of mobility, i.e. terminal mobility, 
session mobility, personal mobility, and service 
mobility [2]. Terminal mobility is the capability to 
keep a session alive after the terminal device moves to 
a different IP subnet. Session mobility is the capability 
to maintain a session while the user is changing the 
terminal device. Personal mobility allows a user to 
become reachable at different terminal devices by the 
same logical address. Service mobility is the capability 
to access the user’s services (e.g. address book, speed 
dialing, buddy lists) while the user is moving or 
changing devices and network service providers. In 
this paper we focus on SIP terminal mobility and 
propose a software architecture to implement this 
capability in a SIP User Agent. The empirical 
measurements (in both IPv4 and IPv6) show the SIP 
mobility performance for real-time multimedia 
applications, especially voice over IP (VoIP). 
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Figure 1. SIP terminal mobility procedure 

 
Figure 1 illustrates the flow of SIP terminal 

mobility procedure. In the figure, the Mobile Host 
(MH) and the Correspondent Host (CH) are SIP User 
Agents (UAs). The MH will move from Network A to 
Network B. Suppose that Network A assigns an IP 
address 140.113.214.108 to the MH. Then a SIP 
multimedia session can be established between the MH 
and the CH, by following the standard SIP call setup 
procedure (INVITE/ 200 OK/ ACK) as described in 
[1]. In this procedure an INVITE message is sent 
between the MH and the CH. The INVITE message 
with the Session Description Protocol (SDP) content is 
shown in Table 1(a). Now, let us consider the scenario 
with mobility support. During the SIP multimedia 
session, the MH moves from Network A to Network B 
and acquires a new IP address 140.113.131.72 at 
Network B. Then the following steps are executed. 
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Table 1. SIP INVITE message and re-INVITE 
message  

 
INVITE sip:944021117@sip.ipv6.club.tw SIP/2.0
Via: SIP/2.0/UDP 140.113.214.108:5060;branch=z9hG4bK6608
From: <sip:chyei@sip.ipv6.club.tw>;tag=8653
To: <sip:944021117@sip.ipv6.club.tw>
Call-ID: 7557@140.113.214.108
CSeq: 20 INVITE
Contact: <sip:chyei@140.113.214.108:5060>
Max-Forwards: 5
User-Agent: Lab117-PoC-VoIP-UA/0.0.1
Subject: test
Expires: 120
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, REFER, 
                  SUBSCRIBE, NOTIFY, MESSAGE
Content-Type: application/sdp
Content-Length:   217

v=0
o=userX 20000001 20000001 IN IP4 140.113.214.108
s=A call
c=IN IP4 140.113.214.108
t=0 0
m=audio 9000 RTP/AVP 0 8 18 3
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729/8000
a=rtpmap:3 GSM/8000

(a) INVITE

(b) re-INVITE

INVITE sip:944021117@sip.ipv6.club.tw SIP/2.0
Via: SIP/2.0/UDP 140.113.131.72:5060;branch=z9hG4bK41
From: <sip:chyei@sip.ipv6.club.tw>;tag=8653
To: <sip:944021117@sip.ipv6.club.tw>;tag=10651
Call-ID: 7557@140.113.214.108
CSeq: 21 INVITE
Contact: <sip:chyei@140.113.131.72:5060>
Max-Forwards: 5
User-Agent: Lab117-PoC-VoIP-UA/0.0.1
Subject: test
Content-Type: application/sdp
Content-Length:   217

v=0
o=userX 20000001 20000002 IN IP4 140.113.131.72
s=A call
c=IN IP4 140.113.131.72
t=0 0
m=audio 9000 RTP/AVP 0 8 18 3
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729/8000
a=rtpmap:3 GSM/8000
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Step 1. The MH sends a SIP re-INVITE request to 

the CH. The format of the re-INVITE message is 
shown in Table 1(b). Note that the headers “From”, 
“To”, and “Call-ID” must be the same as those in the 
INVITE message (see Table 1 (1)). The Contact header 
field is updated to the MH’s new IP address (from 
140.113.214.108 to 140.113.131.72; see Table 1 (2)). 
The Contact header field provides the address that can 
be used to contact the SIP UA for subsequent requests. 
A new SDP content will be included in the re-INVITE 
message. Specifically, the connection address field 
(“c=”) is updated to the MH’s new IP address (from 
140.113.214.108 to 140.113.131.72; see Table 1 (3)). 

 
Step 2. When the CH receives the re-INVITE 

request, it replies a SIP 200 OK response to indicate 

that the CH recognizes the IP address change of the 
MH. 

 
Step 3. The MH replies with a SIP ACK message to 

notify the CH that it has received the SIP 200 OK 
response.  

 
Step 4. The CH modifies the session parameters 

according to the new connection address in the SDP 
content, and then the media data transmission is re-
established between the CH and the MH. 

 
In the above procedure, SIP re-INVITE message is 

utilized to notify the calling party to change media 
transmission parameters. Table 1 shows that the format 
of the SIP re-INVITE is exactly the same as SIP 
INVITE. Therefore SIP terminal mobility does not 
need to modify the SIP protocol or create a new SIP 
method. As indicated in [3], SIP terminal mobility 
supports fast handoff, low latency, and high bandwidth 
utilization. 

 
In the remainder of this paper we will elaborate the 

architectural design on the protocol stack 
implementation of SIP terminal mobility and compare 
the performance results measured from empirical 
experiments. 
 
2. Software Architecture of a SIP User 
Agent 
 

This section describes the implementation of SIP 
terminal mobility. Figure 2 illustrates the software 
architecture of the SIP UA which is designed and 
implemented in National Chiao Tung University 
(NCTU). Figure 2 (1), (2), and (3) are open-source 
libraries and application programming interfaces 
(APIs). In the SIP Core module, eXtended osip 
(eXosip [4]) based on the GNU osip [5] library is 
utilized to implement the SIP protocol stack. The SIP 
Core module supports SIP communication with other 
SIP UAs. This module is invoked by the Call Control 
module to execute the call setup or teardown 
procedure following the standard SIP protocol. The 
RTP Core module utilizes the oRTP library [6] to 
implement Real-time Transport Protocol (RTP) stack 
under GNU Lesser General Public License (LGPL). 
This module builds RTP sessions between SIP UAs. 
The User Interface module supports interfaces for 
interactions between a user and the SIP UA. The Call 
Control module instructs other NCTU SIP UA 
modules to handle call related activities such as call 
answer, call rejection, and make an outgoing call, etc. 
The Multimedia Control module generates audible 
tones such as the ringing tone, the ringback tone, and 
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the busy tone to notify the user of various call status. 
When a call is established, this module plays the voice 
data it received from the TCP/IP module, or converts 
the voice from the user and delivers it over the TCP/IP 
module. The details of the above modules can be found 
in [7].  
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Figure 2. Architecture of NCTU SIP UA 

 
The SIP Mobility module utilizes Windows 

IPHelper API with a function WSAIoctl() (WSA 
prefix for Winsock API) to monitor the status of local 
IP addresses of the SIP UA and control the whole 
process of the SIP terminal mobility procedure. 
Whenever the SIP UA detects that its IP addresses are 
modified, added, or deleted, the callback function 
IPChangeHandler() in SIP Mobility module will be 
invoked. The detailed operations will be elaborated in 
the next section. 

 
3. Implementation of SIP Terminal 
Mobility 
 

Figure 3 illustrates the interaction between modules 
of the NCTU SIP UA during the SIP terminal mobility 
procedure. The steps in Figure 3 are described as 
follows. 

 
Step 1. As the SIP UA moves to a new network, the 

modification of IP addresses causes IPHelper API to 
trigger the event which activates the callback function 
in SIP Mobility module. Through 
IPChangeHandler(), SIP Mobility module retrieves 
IP addresses on local host by function 
GetAdaptersAddresses() in IPHelper API, and 
detects that it is assigned a new IP addresses from the 

network. Therefore SIP terminal mobility procedure 
will be activated. 

 
Step 2. At the startup of the NCTU SIP UA, the 

eXosip library will create a UDP socket for SIP 
signaling [4]. The socket is bound to the local IP 
address. After the IP address is changed, the SIP 
mobility module will modify this socket with the new 
IP address through the function eXosip_modify_ip() 
provided by the SIP Core module. 
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Figure 3. The process flow of SIP terminal 

mobility 
 

Step 3. After the socket in eXosip is modified, the 
SIP mobility module generates an event 
SIPCore_IPCHANGE_NEWIP_NOTIFY to notify 
the Call Control module to execute SIP terminal 
mobility procedure. 

 
Step 4. Because the UA is involved in an ongoing 

session, the Call Control module will send a SIP re-
INVITE request through the SIP Core module to the 
CH. 

 
Step 5. Meanwhile, the Call Control module 

instructs the Multimedia Control module to suspend 
the RTP session. 

 
Step 6. After the UA has received the SIP 200 OK 

response from the CH, it follows the standard SIP 
procedure to send SIP ACK to the CH. 

 
Step 7. The Call Control module instructs the 

Multimedia Control module to resume the RTP session 
at the new connection address as described in Section 
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1. The RTP session between the UA and the CH is re-
established. 
 
4. Performance Comparison 
 

In [8], the delay of a SIP UA mobility was 
empirically measured. Figure 4 illustrates the delay for 
SIP terminal mobility procedure, which can be divided 
into the following parts: D1 is the delay for switching 
from one AP to another. D2 is the delay of detecting a 
new router and a new IP subnet after switching AP, 
where MH can detect that it has moved to a new subnet 
by listening to IPv6 Router Advertisement. D3 is the 
delay between when the MH activates the SIP terminal 
mobility procedure and when it receives the SIP 200 
OK response for SIP re-INVITE request. D4 is the 
delay between when the MH activates the SIP terminal 
mobility procedure and when the RTP session is 
resumed again. We adopt the same notations of D1, 
D2, D3, D4 as in [8] for performance measurement. 

 
D1 and D2 are the link-layer delays, which are not 

the focus of SIP terminal mobility. This paper 
evaluates D3 and D4 as in [8]. In D3 and D4 under 
IPv6 environment, there is a delay from Duplicate 
Address Detection (DAD) process. The details of DAD 
are elaborated below: 

 
4.1 IPv6 with Duplicate Address Detection 
 

If the MH configures its IPv6 address via stateless 
address autoconfiguration [9], the stateless mechanism 
allows the MH to generate its own IPv6 addresses 
(referred to as the tentative address). For example, the 
MH has an Ethernet card with MAC address 
00:11:5B:3A:71:E8, when it moves to a subnet with 
prefix 2001:238::/64, then its 48-bit MAC address will 
be converted by EUI-64 process [9] to a 64-bit 
interface identifier 0211:5BFF:FE3A:71E8. The IPv6 
address 2001:238::0211:5BFF:FE3A:71E8 is 
(temporarily) assigned to it. Since the tentative address 
may be duplicated, the Duplicate Address Detection 
(DAD) algorithm is activated before the MH can send 
packets via this IPv6 address. 
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Figure 4. The delay of SIP terminal mobility 

procedure 
 
After generating the IPv6 address according to the 

received IPv6 subnet prefix, the MH sends a Neighbor 
Solicitation (NS) message on the local link. If there is 
no response until timeout of a pre-determined timer, 
the address will be assigned to the Ethernet card. 
Otherwise a duplicate IP address is detected. Before 
the DAD procedure completes, the host can not send 
packet via the tentative address. Thus the DAD 
procedure introduces additional delay before sending 
the SIP re-INVITE request. According to [9], the delay 
of DAD is 1.5 seconds in average. 

 
Table 2 shows the delays for D3 and D4. The values 

in the first row are the results of NCTU SIP UA, and 
the values of the second row are the results for the SIP 
UA developed by N. Nakajima, A. Dutta, S. Das and H. 
Schulzrinne (NDDS) SIP UA [8]. 
 

Table 2. Delay of SIP mobility procedure in 
IPv6 environment with DAD 

 
The delay D4 from NCTU SIP UA takes 1882.6ms. 

The results from NDDS SIP UA show longer delay, 
4187.7ms. The possible reason which causes the longer 
delay is that NDDS SIP UA was implemented with 
Tcl/Tk [10], which is a higher level programming 
language such that more overhead might be involved. 
For the 1822.6ms delay measured in our experiment, 
the DAD process takes approximately 1500ms while 
the SIP terminal mobility mechanism only takes about 
300ms. This clearly shows that DAD process is the 

Devices Under Test D3 (ms) D4 (ms) 

NCTU SIP UA 1742.1 1822.6 

NDDS SIP UA 3932.2 4187.7 
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bottleneck which causes the delay of SIP terminal 
mobility. In next section we will show the results 
which exclude the DAD process and compare them 
with the results in IPv4 environment. 
 
4.2 IPv4 and IPv6 without Duplicate Address 
Detection 
 

In the previous section, we compared the SIP 
terminal mobility delay for NCTU SIP UA and NDDS 
SIP UA under IPv6 environment. The time analysis of 
each step in the mobility mechanism shows that the 
DAD is the bottleneck of the whole process. To solve 
this problem, it was proposed in [8] to modify the 
Linux kernel to remove the DAD mechanism in IPv6 
address autoconfiguration process. In our experiments, 
we adopted a simpler approach by hardwiring the IPv6 
address assignment in our program rather than using 
autoconfiguration. This approach also demonstrates 
well to exclude the DAD mechanism.  In both 
approaches, the total delay of SIP terminal mobility is 
significantly shortened. The experimental results are 
shown in Table 3.  
 

Table 3. Delay of SIP mobility procedure in 
IPv6 environment without DAD 

 
This table shows that the delay of D4 is reduced to 

217.9ms in NCTU SIP UA and 418.6ms in NDDS SIP 
UA. Compared with Table 2, the delay is decreased 
significantly. This experiment clearly shows that the 
DAD procedure is the bottleneck which increases the 
delay during the SIP terminal mobility procedure. If 
we remove the DAD procedure, the delay of SIP 
terminal mobility (38.8ms in NCTU SIP UA, and 
161.6ms in NDDS SIP UA) is short enough to support 
VoIP communication with seamless handover [11], 
where shorter than 50ms of interruption in handoff is 
desired for VoIP communications. However, as noted 
in [8], another address configuration method must be 
provided to replace the DAD procedure after it is 
removed. Otherwise we can not make sure whether 
there is any duplicate address existing in the same 
subnet. 

 
A comparison of the performance we measured in 

IPv4 and IPv6 environments also shows interesting 
results. Table 4 shows the delay of SIP terminal 
mobility in IPv4 network and the results in IPv6 
environment excluding DAD procedure (the same as 
the first row in Table 3). In IPv4 network, there is no 
DAD procedure, so the delay is short (214.4ms).  

Moreover, the delay time of SIP mobility procedure in 
IPv4 and IPv6 (with DAD process excluded) is very 
close, either in signal completion or media resumption. 
 

Table 4. Delay of SIP mobility procedure in 
IPv4/IPv6 environment 

Devices Under Test D3 (ms) D4 (ms) 

NCTU SIP UA (IPv4) 38.2 214.4 
NCTU SIP UA (IPv6) 38.8 217.9 

 
5. Interoperability 
 

In previous sections, the experiment is conducted 
between the same NCTU SIP UA software. In this 
section we shall show the experimental results with 
other SIP UAs. We shall keep using NCTU SIP UA as 
the MH, and select one SIP UA to be the CH. We have 
tested several SIP UAs including softphones and 
hardphones. Table 5 shows those SIP UAs and their 
experimental results. NCTU SIP UA, Windows 
Messenger, and X-Lite UA are sofphones. Snom200, 
Cisco 7940, InnoMedia video phone, and Pingtel are 
hardphones. Notice that even though the MH is always 
NCTU SIP UA, the delay of D3 is quite different. The 
reason is that after receiving a re-INVITE request, each 
SIP UA requires different time to handle the request 
and then generates the SIP 200 OK response.  

 
From Table 5, the results of NCTU SIP UA and 

Windows Messenger 5.1 are almost the same, and the 
X-Lite UA is a little longer (about 11% for D4). In the 
results of hardphones, the delay is obviously longer 
than sofphones. We have consulted the engineers in 
InnoMedia Corporation, and they believe that it is 
caused by the time spent on SDP parsing in the 
protocol stack. Because InnoMedia video phone 
includes video transmission during SIP conversation, 
the SDP contains video media description. Therefore 
this extra complexity increases the delay slightly. We 
also perform the same experiment on CISCO 7940 SIP 
hardphones with different firmware version. In 
firmware version 7.5, the delay of sending 200 OK 
response is more than that in firmware version 6.3. The 
reason is that it applies more rigorous rules in checking 
the SDP contents. For example, in firmware version 
7.5 when the re-INVITE is received, the SDP version 
in session identifier field (the third field in the “o=” 
line) must be verified to see whether it is incremented 
by 1. Certainly this increases the delay, too. 

 
Table 5. Delay of SIP terminal mobility between 

NCTU SIP UA and other SIP UAs 

Devices Under Test D3 (ms) D4 (ms) 
NCTU SIP UA 38.8 217.9 

NDDS SIP UA 161.6 418.6 
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6. Summary 
 

In this paper the protocol architecture design and 
implementation of the SIP terminal mobility are 
illustrated. Empirical measurements show that, the 
delay of the SIP terminal mobility in IPv6 environment 
is about 1822.6ms. However, if DAD is excluded, the 
delay is significantly reduced to 217.9ms. We also 
perform the experiments in IPv4 environment. 
Comparing the two results, it is interesting to notice 
that the delay of SIP terminal mobility in IPv6 
environment without the DAD process is close to that 
in IPv4 environment. Obviously the delay from the 
DAD process is the bottleneck in the SIP terminal 
mobility procedure. 

Moreover, the interoperability testing of terminal 
mobility among SIP UAs is demonstrated. It can be 
seen that the delay of SIP terminal mobility does not 
depend only on the MH, but also on the CH. Because 
each SIP UA sends a SIP 200 OK response after 

receiving a re-INVITE request, the delay time differs 
divergently. According to the information provided by 
the manufacturer, one of the major factors is the 
complexity required in processing the SIP header and 
SDP contents. 
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Devices Under Test D3 (ms) D4 (ms) 

Media 
resumption 
delay (D4) 

compared to 
NCTU SIP UA

NCTU SIP UA 
(IPv4) 
Ver1.1 

38.2 214.4 100% 

Windows Messenger 
Ver5.1.0680 38.2 214.3 99.95% 

X-Lite UA 
Ver2.0 build 1103 50.2 238.4 111.19% 

Snom 200 
(hardphone) 

Ver1.16x 4904 
94.8 270.9 126.35% 

Cisco 7940 
(hardphone) 

Ver5.3 
151.3 340.2 158.68% 

Cisco 7940 
(hardphone) 

Ver7.5 
230.2 404.4 188.62% 

InnoMedia 
(hardphone) 
Ver2.4.17 

173.1 356.1 166.09% 

Pingtel 
Ver2.1.11.24 195.0 370.6 172.85% 


