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Abstract 

In this paper, the longest Hamiltonian cycle problem and the longest Hamiltonian path problem are proved to be NPO- 
complete. @ 1998 Published by Elsevier Science B.V. 
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1. Introduction 

The concept of NP-completeness was proposed by 
Cook [2] to show the hardness of a problem. Many 
problems have been shown to be NP-complete [ 31. 
This is equivalent to saying that those problems can 

hardly have any efficient algorithm. 
Since it is believed that an NP-complete problem 

will unlikely have any efficient algorithm, people turn 
to searching for good approximation algorithms. For 
some problems, we have good approximation algo- 
rithms; for some others, none has been found. It is 
interesting to study whether there can be a good ap- 
proximation algorithm for an NP-complete problem. 
Papadimitriou proposed the concept of MAX SNP to 
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show that some problems cannot have polynomial time 
approximation schemes [ 81. However, the class MAX 
SNP only contains problems which can be expressed in 
a special logical form. Therefore it is a very restricted 
class. Recently, Ausiello, Crescenzi, and Protasi sug- 

gested the concept of NPO-completeness [ 11. They 
first defined the class of NPO problems, which con- 
tains optimization problems and is a very large class. 
Formally, an NPO problem is defined as follows [ 11. 

Definition 1. An NP optimization (NPO) problem A 

is a 

(1) 

(2) 
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four-tuple (I, sol, &, goal) such that _ 
I is the set of the instances of A and it is recog- 
nizable in polynomial time 
Given an instance x of I, sot(x) denotes the set 
of feasible solutions of x. A polynomial function 
p exists such that, for any x and for any y E 
sol(x), ]yI 6 ~(1x1). Moreover, for any x and 
for any y such that Iy] < p( 1x1), it is decidable 
in polynomial time whether y E sol(x) . 

reserved. 
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(3) Given an instance x and a feasible solution y of 

X, m(x, y) denotes the positive integer measure 
of y (also called the value of y). The function 
m is computable in polynomial time and is also 
called the objective function. 

(4) goal E {max, min}. 

Intuitively, according to the above definition, a non- 
deterministic algorithm can be associated with any 
NPO problem A that, for any instance n of A, performs 
the following algorithm. 

begin 
guess y E (0, l}P(lrl); 
if y is a feasible solution of x 
then output m( x, y) 

else abort 
end. 

To construct the completeness in the NPO class, we 
need a reduction. We describe the definition in [ 61 as 
follows: 

Definition 2. Given NPO problems A 

is a strict-reduction from A to B if 

(1) 

(2) 

(3) 

For every instance x in A, f(x) 

in B. 

and B, ( f, g) 

is an instance 

For every feasible solution y to f(x) in B, g(y) 
is a feasible solution in A. 

The absolute error of g(y) to the optimal of x 

is less than or equal to the absolute error of y 
to the optimal of f(x) in B. That is, Jg( y) - 

opTA( 6 IY - oPrLJ(f(n))l. 

Fig. 1 illustrates the concept of “strict reduction”. 

Definition 3. An NPO problem is NPO-complete if 
all NPO problems strictly reduce to it. 

It can be seen that, if problem A strictly reduces 
to problem B, and B has an approximation algorithm 
whose error relative to the optimal is smaller than E, 
then we can use it to construct an approximation al- 
gorithm of A whose error is guaranteed to be smaller 
than E. Therefore, if an optimization problem A strictly 
reduces to an optimization problem B, then the fact 
that problem B has an approximation algorithm with a 
constant performance ratio will imply that problem A 
also has an approximation algorithm with a constant 

Fig. I. Reduction from A to B. 

performance ratio. Hence, if an NPO-complete prob- 

lem has any constant-ratio approximation algorithm, 
then all NPO problems have constant-ratio approxi- 
mation algorithm. Thus the hardness of problem A is 

established. 

2. Problem definition 

The Euclidean traveling salesperson problem is de- 
fined as follows: Given the distances between each 
pair of n cities, the salesperson is required to$nd the 

shortest tour that traverses all the cities exactly once. 
However, on the contrary, it might also be possible 
for people to consider the longest tour. In [ 51 it was 
proposed that for a salesman whose expenses will be 
provided by the company, he may prefer to maximize 
the length of the tour so that his flying mileage can be 
maximized. If we generalize this problem from Eu- 
clidean planes in [5] to general graphs, it leads to 
the longest Hamiltonian cycle problem and the longest 
Hamiltonian path problem which we study in this pa- 
per. 

Problem 1. The longest Hamiltonian cycle problem. 
Instance: A weighted graph: G = (v E), where each 

e E E has a weight w(e). Let n = [VI. 
Solution: A simple cycle in G, i.e. a sequence of ver- 

tices ui,u2,... , u,, 01 such that, for any 1 < i f 

n - 1, (u~,u;+I) E E and (u,,ut) E E. 
Measure: The length of the cycle, i.e., cy’; ’ w( up;+l ) 

+ w(w1). 

Goal: max. 
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Problem 2. The longest Hamiltonian path problem. 

Instance: A weighted graph: G = (v E), where each 
e E E has a weight w(e) , and two given vertices 
U, U. Let it = [VI. 

Solution: A simple path in G, i.e. a sequence of vertices 
u = ui, 4,. . . , v, = v such that, for any 1 6 i < 

n - 1, (u;,u;+l) E E. 
Measure: The length of the path, i.e., ~~=~’ w( U;Ui+l ) . 
Goal: max. 

We are interested in whether it is possible for the 
longest Hamiltonian cycle problem and the longest 
Hamiltonian path problem to have any approxima- 
tion algorithm with constant performance ratio. In 

this paper, we shall show the NPO-completeness 
of the longest Hamiltonian cycle problem and the 
longest Hamiltonian path problem. Thus it is un- 
likely for them to have any approximation algorithm 
with constant performance ratio. It is worth not- 
ing that a related problem, namely the longest path 
problem, has been proved to have no approximation 
algorithm with constant performance ratio unless 

NP= P 141. 

3. NPO-completeness of the longest Hamiltonian 
cycle problem 

Theorem 4. The longest Hamiltonian cycle problem 

is NPO-complete. 

Essentially, we shall show that the maximum 
weighted 3-satisfiability problem (MAX-W3SAT 
[ 61) strictly reduces to the longest Hamiltonian cy- 

cle problem. The definition of MAX-W3SAT is as 

follows: 

Problem 3. The maximum weighted 3-satisjiability 

problem. 
Instance: A boolean formula qb which is a conjunction 

of 3-clauses (clauses with exactly 3 literals), with 
positive integer weights w(xi) on the variables ap- 
pearing in 4. 

Solution: A truth assignment T(xi) assigned to the 
variables, where r( xi) satisfies the formula 4. 

Measure: &xi)=true W(Xi). 

Goal: max. 

U 

A 

e1 

Fig. 2. The component representing a clause. 

X 

0 

Y- 

Fig. 3. The component representing a variable. 

Proof of Theorem 4. The construction of our strict- 
reduction consists of 2 stages: 

(1) We use the reduction from 3SAT to the Hamil- 

tonian cycle problem as in [7 1. Fig. 2 shows a basic 
graph corresponding to a 3-clause and Fig. 3 corre- 
sponds to a Boolean variable. 

Given a set of 3-clauses, we shall construct a graph. 
There will be a component, such as that shown in 
Fig. 2, for each clause. Ail such components are iden- 
tical. For each variable which appears in the clauses, 

there will be a component also. Again, all such com- 
ponents are identical. The component for a clause C 
will be connected to the component for variable x if 
and only if x appears in C. The connection depends 

upon how x appears, positively or negatively, in C. 
(This is called A-connector in [ 71.) The connection 

scheme is shown in Fig. 4. As illustrated in Fig. 4, 
if xl appears positively in clause 1, we combine the 
left edge of the component representing XI to the edge 
which represents the literal in the clause. If xr appears 
negatively in clause 2, we combine its right edge to 
the edge which represents the corresponding literal in 
clause 2. 

In Fig. 2, for every Hamiltonian path from u to v, 
at least one of the edges el, e2, es will not be tra- 
versed (this corresponds to the true literal in a satis- 
fied clause). Similarly, for the graph of Fig. 3, either 
x or z will be traversed. 
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Fig. 4. An example: (XI V x2 V ~3) A (& V .172 V x3) with the 

assignment ( x 1 , X2, x3 ) 

It was shown in [7] that this graph has a Hamilto- 
nian cycle if and only if there is a truth assignment of 
the formula in 3-SAT. In our example, the bold line 
shown in Fig. 4, which is a tour, corresponds to a truth 

assignment xi = T, x2 = F, x3 = T. 
(2) The weight of each edge is assigned as follows. 

The left edge corresponding to x; is assigned weight 
w(xj), and all the other edges assigned weights 0. It 

can be seen easily that G has a Hamiltonian Cycle 
with weight W if and only if 4 has a truth assignment 
with weight W. 

Thus, by ( 1) and (2)) we obtain a strict-reduction 
from the MAX-W3SAT problem to the longest Hamil- 
tonian cycle problem. In [6] it was already shown 
that MAX-W3SAT is NPO-complete. Therefore, by 
strictly reducing MAX-W3SAT to the longest Hamil- 
tonian cycle problem, we have successfully proved 
that the longest Hamiltonian cycle problem is NPO- 
complete. 0 

4. NPO-completeness of the longest Hamiltonian 
path problem 

Theorem 5. The longest Hamiltonian path problem 

is NPO-complete. 

Fig. 5. Reduction from the longest Hamiltonian cycle problem to 

the longest Hamiltonian path problem. 

Proof. We strictly reduce the longest Hamiltonian cy- 
cle problem to the longest Hamiltonian path problem. 

Suppose G = ( V E) is the given graph in the longest 
Hamiltonian cycle problem, and the weight of each 
edge e is w(e). Let us construct G’ in the longest 

Hamiltonian path problem such that, G’ = (V’, E’), 

whereV’= VU{vu}andE’= EU{(ua,u) ) V(q,u) E 
E}. We set the weights of edges in E’ to be 

w’(uu) = w(uu) Vuv E E, 

and 

w’(uuc) = w(uu,) Vuv, E E’. 

It can be easily seen that, G has a Hamiltonian cycle 
if and only if G’ has a Hamiltonian path from VI to 
vo. See Fig. 5. 

Because we assign the weight of (ve, u) to be the 

same as the weight of (vi, u), G has a Hamiltonian 
cycle with length W if and only if G’ has a Hamiltonian 

path with length W. Hence we have strictly reduced 

the Longest Hamiltonian Cycle problem to the longest 
Hamiltonian path problem. 0 

5. Conclusion 

In this paper, we have proved the NPO-completeness 
of the longest Hamiltonian cycle problem and the 
longest Hamiltonian path problem. Hence, it is un- 
likely that these two problems have approximation 
algorithm with constant performance ratios. The 
maximum traveling salesperson problem on general 
graphs [5], is thus hard to approximate since it is 
equivalent to the longest Hamiltonian cycle prob- 
lem. 
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