
Building Web-base SIP Analyzer with Ajax Approach

Quincy Wu and Yan-Hsiang Wang
Department of Computer Science and Information Engineering

National Chi Nan University
No. 1, University Road, Puli, Nantou 545, Taiwan

{solomon,s94321517}@ncnu.edu.tw

Abstract

Web applications are generally less interactive than
desktop applications. Due to the simple request-response
model between web browsers and web servers, users usu-
ally experience frequent waiting during a session whenever
the web applications need to get data from the server. Af-
ter a browser sends out a request and await the response
to return from the server, no further requests can be taken
during this waiting time.

In this paper we propose integrating the Ajax approach
to the design of a web-base analyzer for Session Initiation
Protocol (SIP), which is a popular protocol in IP telephony
industry. By getting data asynchronously from the server,
this web-base analyzer can monitor the SIP messages on
the server in real-time without reloading.

Keywords: Ajax, libpcap, packet analyzer, SIP

1 Introduction

Internet multimedia applications like Internet telephone
calls, multimedia streaming, and multimedia conferences
are growing in popularity. Along with H.323 and others,
Session Initiation Protocol (SIP) is widely used as signaling
protocol for Voice over IP. It is an application layer signal-
ing protocol for Internet multimedia session establishment,
modification, and termination [9]. In November 2000, SIP
was accepted by the Third Generation Partnership Project
(3GPP) as a signaling protocol and permanent element of
the IP Multimedia Subsystem (IMS) architecture.

Because of the flexibility and rich features of SIP, more
and more Internet telephony service providers (ITSP) adopt
it as the protocol in delivering their services. A growing
number of SIP-based services and products are now becom-
ing available in the market, including SIP servers, SIP gate-
ways, SIP firewalls and network address translators (NATs),
and SIP phones (which are known as ”SIP user agents” in its
terminology) [8]. Common appearance of SIP user agents

includes IP phones, USB phones, video phones, softphones,
and WiFi phones. When programmers need to develop
the SIP system on these user agents, generally it will be
very helpful to have a tool to capture the SIP messages for
real-time or postmortem analysis. For softphone program-
mers, this is not a difficult task. As shown in Figure 1, on
desktop or laptop computers, it is easy to find user-friendly
packet analyzers such as Ethereal [2], which runs on Linux,
FreeBSD, and Microsoft Windows 2000/XP/2003, to pro-
vide rich functions in capturing network packets and per-
forming further analyses. On the contrary, for embedded
devices such as IP phones and WiFi phones, generally the
limited computing power prohibits them from running a so-
phisticated utility like Ethereal. Even worse, these devices
generally have small LCD displays with low resolution, or
LED displays which can only show two or three text lines.
It is certainly unfavorable to show the packet analysis with
a small display on this kind of device.

Since SIP user agents will communicate via SIP servers,
one of the common measures taken by developers is to run
the packet analyzer on SIP servers. As long as the packet
analyzer supports a remote displaying mechanism such as X
Window, the developer can bring a WiFi phone and his/her
laptop to a distant site, run the packet analyzer on the server,
and display the output to the laptop in real time. This allows
the developer to test the WiFi phone in a location that is
distant from the SIP server, while keeping capable of mon-
itoring the SIP messages between the WiFi phone and the
SIP server. However, for a tool like Ethereal to be able to
capture the network packets sent and received on the SIP
server, generally the super-user privilege is required to run
this program on the server. For an ITSP that is running an
interoperability test with a vendor of a new model of WiFi
phone, generally this imposes concerns for possible com-
promise of security and confidentiality.

Some web-base packet analyzers were developed to ad-
dress this issue, such as WIST [1] and Distributed SIP An-
alyzer [7]. In WIST, a Unix tool ”ngrep” is running on the
server to capture SIP messages and save them in a log file.



Figure 1. Graphical user interface of Ethereal
to show the captured packets and SIP mes-
sage flow

Users may use web browsers to show a specific SIP message
in plaintext. In Distributed SIP Analyzer, BSD Packet Fil-
ter (BPF) [5] is utilized to capture SIP messages and store
them in MySQL database. Users may use web browsers
to query the database to obtain the result from the server
after running a PHP script. To sum up, in both implemen-
tations, the server captures the SIP messages from its net-
work interface and store them in a pre-defined format for
client browsers to query. Since users are only allowed to
query via a web browser, it is not necessary to give them
the super-user privilege on the server. A normal user priv-
ilege is enough. When it is necessary, the system adminis-
trator can also apply the access control mechanism that is
commonly adopted in web administration, to further limit
what SIP messages can be seen for different levels of user
accounts. This provides better protection of the sensitive
information of telephony call records.

However, due to the traditional limitation of web ap-
plications, these two tools are not capable of showing the
captured SIP messages in real time. To get the most up-
to-date information on the server, a webpage must be re-
freshed, and the user must wait for the response while the
server is handling the request. In comparison with Ethe-
real, which provides better interaction with users, afore-
mentioned web tools are less inconvenient. In this pa-
per we present the design and implementation of a web-
base SIP analyzer which is capable of always showing the
up-to-date results of packet capturing. By integrating the
Asynchronous JavaScript and XML (Ajax) approach into
our system, we are able to update the webpage without a
browser refresh. This makes it look and act more like desk-

top applications, since users do not spend time waiting for
entire pages to reload, which is essentially a common draw-
back in traditional web applications.

The rest of this paper is organized as follows. Section
2 describes the design of our system architecture, and the
functionality of each components is illustrated. Section
3 provides the implementation notes for integrating these
components. Section 4 presents some security and privacy
issues, and Section 5 concludes the paper.

2 System architecture

Figure 2 depicts the overview of our web-base SIP an-
alyzer. The system consists of two portions: a group of
components on the SIP server to capture the SIP messages
and store them in a database for future query, and the other
group of components on web browser client to dynamically
update the results displayed to users. We shall illustrate the
function of each component and supporting technologies in
the following subsections.

Figure 2. Architecture of our Web-base SIP
analyzer

2.1 Server-side system

For packets sent and received on the Ethernet interface
of the SIP server, we run a C program Captor invoking
the libpcap library [6] to capture these packets. This li-
brary provides a common interface on various operating
systems (including FreeBSD, Linux, MS-Windows) to per-
form packets filtering. Programmers can specify the condi-
tions in a high level description (e.g. udp port 5060)
and call the function pcap setfilter() to ask the kernel of the
operating system to perform the packet filtering. A func-
tion pcap loop is invoked to iterate through for all packets
captured by the kernel. We then define a callback function



got packet() to handle these captured SIP messages. We
strip off the IP and UDP headers and output the SIP header
fields with a function print payload(). This output is piped
to another process running a PHP script SIP Extractor to
parse the SIP header fields and store them into the MySQL
database. Because PHP supports associative arrays, and
provides rich functions in manipulating strings, it is an ideal
tool to handle this task. Note that in comparison with [1, 7],
the architectural design of the server portion is very similar,
except different tools were chosen in each implementation.

2.2 Client system

The real-time update on the browser client is less
straightforward. With typical web applications, users must
spend time waiting for entire pages to reload, even for small
changed. This makes the applications less interactive, and
usually frustrates users with the long and frequent wait-
ing. Asynchronous JavaScript and XML (Ajax) is a web
development technique for creating interactive web applica-
tions [3]. It can add or retrieve new data for a webpage and
update the page immediately without reloading. As shown
in Figure 3(a), in a traditional web application, the user ac-
tion (generally a click on the SUBMIT button) triggers an
HTTP request to a web server. The server will processes the
request and returns an HTML page to the client. While the
browser is waiting for the response from the server to update
the page, the application is locked up and no additional re-
quest is handled during this waiting time. On the contrary,
Ajax has a different approach to handle requests. As de-
picted in Figure 3(b), by creating a JavaScript-based engine
that runs on the browser, the engine takes user inputs and
handles many interactions on the client side. If the engine
needs more data, it utilizes the browser object XMLHttpRe-
quest to request data from the server in the background,
while letting users continue to interact with the applications.
This provides better interaction which allows the user to
feel as though they are manipulating desktop-resident soft-
ware. Therefore, this approach recently becomes extremely
popular. Ajax is supported by major browsers, including
Internet Explorer since 5.0, Mozilla since 1.0, Safari since
1.2, and Opera since 8.0. Many gorgeous websites, such as
Google Maps (http://maps.google.com/) and Google Sug-
gest (http://www.google.com/webhp?complete=1) demon-
strates how Ajax can be helpful in improving the interac-
tivity of web applications.

In our client-side JavaScript code, the Ajax engine will
get data from the web server. While users are viewing the
SIP messages displayed on their screen, the Ajax engine
keeps communicating with the web server asynchronously.
Whenever it notices that additional SIP messages are cap-
tured by the server, it requests them asynchronously from
the server. After it receives all the incoming data, it up-

Figure 3. The traditional model for web appli-
cations compared to the Ajax model

dates the user screen. Therefore, the user screen is updated
in a short time. Compared with Ajax, classic web applica-
tions keep users waiting whenever they send a request to the
server. For these application to show the most up-to-date re-
sults, only ”periodic update” (e.g. every one minute) can be
implemented. If the webpage was reloaded every second,
users will notice the frequent application lock up, which is
generally intolerable.

After the Ajax engine receives the SIP messages from
the server, it organizes them in an HTML table and show
some major fields of interest, such as the timestamp of the
packet, the SIP method name or response code, and the
source/destination IP addresses of the SIP message. The
SIP method name can be the standard ones defined in [9],
such as INVITE, REGISTER, CANCEL, OPTIONS, BYE,
ACK. It can also be any extension like SUBSCRIBE, NO-
TIFY, INFO. Our parser can handle any SIP message with
correct syntax. It is unnecessary to modify our analyzer in
order to handle any new SIP extension. When users click a
SIP message, the full contents of the SIP header will be dis-
played in another frame, and the user can choose to expand
or collapse the display of SIP start line, message header, or
message body (generally to be the Session Description Pro-
tocol [4] which specifies the connection address and media
format), as shown in Figure 4.



Figure 4. Captured SIP messages and the de-
tailed contents of a message

3 Implementation notes

According to [9], the default SIP port is 5060 running on
UDP, so the default capture filter in our system is configured
as ”udp port 5060”. It can be configured to capture
packets on other UDP ports or on other transport protocols
like TCP or SCTP, depending on what is the port and trans-
port protocol used by the SIP server on this host. Although
libpcap supports a promiscuous mode to have the operating
system kernel capturing all packets on the Ethernet link, in
our application we only care about the SIP messages sent
and received on the SIP server. Therefore, we disable the
promiscuous mode when we invoke the libpcap library.

When the client queries the database to look for SIP mes-
sages of interest, we allow users to get all the SIP messages
in a single day, originated from or destined to a specific IP
address, or only shows a specific type of SIP request (REG-
ISTER, INVITE, BYE, and so forth). The user may also
click the ”Enable Live Update” button to ask the browser
to asynchronously get the most up-to-date data from the
server, and show them on the user screen whenever there
comes new information. To display those messages more
elegantly and more smoothly, we place a limit on the dis-
play records when the browser is running in the ”Live Up-
date” mode. In our example we specify that only the most
recent 15 SIP messages are displayed, but this can be ad-
justed by the web form before enabling the ”Live Update”
mode.

This tool is published as open source on SourceForce
(https://sourceforge.net/projects/ncnu-voip). We wish this

application could add an example to the exciting services
which have been demonstrated by the Ajax approach.

4 Security and privacy issues

Conventionally, if you want to enable a user to view the
SIP signals on a server, you need to give him/her the super-
user privilege to run Ethereal, because Ethereal needs the
privilege to access the network interface to capture pack-
ets. With our tool, packets are captured and deposited into
the database, so further access can be controlled via the
database system or web server. Any user who wants to
view the SIP messages will only get normal user privilege,
but he/she is able to run our SIP analyzer to observe the
real-time SIP signaling, which is very useful in trouble-
shooting. This is an improvement on security by limiting
the user privilege in accessing data, while the convenience
is not sacrificed.

However, for some sensitive sites, it is also possible that
you want to limit the SIP messages displayed on the screen.
It is reasonable that an ITSP does not want the engineer
from a WiFi phone vendor to be able to see all the call-
ing records between its customers during an interoperabil-
ity test. In this case, our approach can enforce the extra
limit by applying access control mechanisms of web server
or database management system, which is certainly a bet-
ter choice in comparison with a tool like Ethereal because
Ethereal by nature allows the user to view any packet on the
server.

5 Conclusions and future work

As more and more SIP appliances emerge, web-base SIP
analyzer is a convenient tool for developers, especially for
trouble-shooting embedded systems such as WiFi phones.
By adopting Ajax approach, our system can continuously
update the user screen without keeping user waiting, which
makes it act more like desktop applications.

Although this system proves to be convenient and useful
in a campus SIP VoIP trial, it is not clear whether the Ajax
engine will consume extra resource that will cause any per-
formance issue. We expect to perform further pressure tests
to study the maximum number of SIP messages that can be
handled by our system, and compare it with other analysis
tools.

References

[1] Devel-IT Team. WIST - web interface for SIP trace.
http://sourceforge.net/projects/wist/.

[2] Ethereal, Inc. Ethereal: A network protocol analyzer.
http://www.ethereal.com/.



[3] J. J. Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/publications/essays/archives/000385.php.

[4] M. Handley, V. Jacobson, and C. Perkins. SDP: Session de-
scription protocol. IEEE RFC 4566, July 2006.

[5] S. McCanne and V. Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In Proceedings of
the 1993 Winter USENIX Technical Conference, pages 259–
269, San Diego, CA, January 1993.

[6] S. McCanne, C. Leres, and V. Jacobson. Libpcap.
http://www.tcpdump.org/.

[7] J.-Y. Pan. Distributed SIP analyzer.
http://sourceforge.net/projects/sipanalzyer/.

[8] J. Pulver. SIP products list.
http://www.pulver.com/products/sip/.

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session initiation protocol. IEEE RFC 3261, June 2002.


