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Porting the Session
Initiation Protocol
to IPv6
A modified Java-based SIP implementation offers one

approach to developing multimedia services that run on both

IPv4 and IPv6 networks. 

The transition from IPv4 to IPv6
will be a slow evolutionary move
enabled by the middleware and

software development tools to develop
new applications, especially for mobile
users. An important driver for such new
Internet services could come from com-
bining the session initiation protocol
(SIP)1 — used in multimedia sessions —
with Java, which is popular for develop-
ing portable code and wireless applica-
tions. To date, however, few developers
have done much work in porting Java
programs to IPv6. 

In an attempt to produce software that
works over both IPv6- and IPv4-enabled
computers, we ported the code from a
publicly available, Java-based SIP library
to IPv6. Like any ongoing development,
the original JSIP library contained errors
and did not cover all the features that
building SIP elements requires. The asso-
ciated documentation was also scarce. 

This article describes our experiences
in porting SIP to IPv6. To deploy a ser-
vice in which IPv6 nodes communicate
with IPv4 nodes, we selected an
IPv4–IPv6 transition mechanism that
combines an application-level gateway
(ALG) with network address transla-
tion—protocol translation (NAT-PT)2 for
application traffic. Our solution required
us to make several modifications to the
original JSIP library. Modifications
where required for supporting both
types of IP addresses, and we had to
modify the application payload to trans-
late the IP addresses when required for
IPv6 to communicate with. The final
code can be found on our Web site
(www.dit.upm.es/~robles).

The Session 
Initiation Protocol
SIP is an application-layer control pro-
tocol that is used to establish, modify,



and terminate multimedia sessions such as Inter-
net telephony calls. SIP can also be used for
inviting participants to existing sessions, such as
multicast conferences. SIP transparently supports
name mapping and redirection services, which in
turn support personal mobility3 by allowing a
user to maintain a single externally visible iden-
tifier, regardless of network location.

SIP is used for peer-to-peer communications —
that is, both parties in a call are considered equals;
there is no master or slave. Similar to HTTP, how-
ever, SIP uses a transaction model in which a SIP
client generates a request and a SIP server gener-
ates a response. During a session, a SIP end point
will typically switch between being a client and a
server, depending on whether it is initiating or
responding to a request.

There are three main elements in a SIP network.
User agents (UAs) are the end devices that origi-
nate SIP requests to establish media sessions and
send and receive media. Servers are intermediary
devices that assist user agents in session estab-
lishment and other functions. Location servers pro-
vide information about a caller’s possible location.

There are several types of SIP servers: 

• A SIP proxy receives SIP requests from a UA or
another proxy and forwards the request to
another location. A request can traverse sever-
al proxies on its way to a UA. 

• A redirect server receives a request from a UA
or proxy, maps the address into zero or more
new addresses, and returns a redirect response
with these addresses to the client. 

• A register server receives SIP registration
requests and updates the user agent’s informa-
tion in a location server or another database.

• A user agent server (UAS) is a logical entity, a
server application that contacts the user when
a SIP request is received and returns a response
on behalf of the user. This role lasts the dura-
tion of one transaction. 

SIP is part of the overall IETF multimedia data and
control architecture, which currently incorporates
protocols such as the resource reservation setup
protocol (RSVP), the real-time transport protocol
(RTP), the real-time streaming protocol (RTSP), the
session announcement protocol (SAP), and the ses-
sion description protocol (SDP). Although, SIP’s
functionality and operation do not depend on any
of these other protocols, SIP is usually used for
negotiating and carrying information related to all
of them. 

The JSIP Project
JSIP is an open-source implementation that pro-
vides a library of basic Java classes for imple-
menting SIP.4 Compared to other alternatives, JSIP
provides two key advantages:

• Availability. As an open-source library, JSIP
offers free access to the completely Java-based
code, which is unique because most available
SIP implementations are based on C/C++;
meanwhile, in line with our work, many emerg-
ing SIP implementations are based on Java. 

• Independence. JSIP is not associated with any
proprietary application, and its Java-based
code makes it portable to different platforms.
Nevertheless, there is no IPv6 support for Java
JDKs for Windows, which jeopardizes develop-
ment of programs for this platform. 

From a functional point of view, we can iden-
tify two main classes in the JSIP library: those
related to analyzing and processing SIP elements
and those related to creating UAs. The first group
of classes is organized around SipMessage and
represents the core of the library. Figure 1 shows
the main classes related to message processing.
This group of classes is related to analysis and
processing of syntactic elements of the SIP proto-
col and deals with IP addresses contained on SIP
messages. The SipMessage, SipRequest-
Message, and SipResponseMessage deal with
requests and responses. SipRequestMessage
derives a set of classes, each corresponding to a
SIP message. Classes surrounded by ovals indicate
those we added during our work. Management of
IP addresses should be performed by the SIP ele-
ments build over the library, not by the library
itself. Toward that end, we provided a mechanism
for allowing transparent representation, manage-
ment, and storage of IP addresses independently
of their type (IPV4 or IPv6). We reached this
objective by defining the abstract class IpAd-
dress, which is used for deriving IpAddress4,
IpAddress6, and UnknownAddress. Then using
Java’s object-oriented functions, we can manage
IP addresses independently of their specific type.
Only when specific processing is required is the
exact type investigated.

A SIP message is composed of other structures,
mainly headers and identifiers. The SipUri class,
which we have added to our improved library,
represents an address or SIP user identifier, and
can be defined with the following simplified
structure:
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‘user name”
<sip:user_id@hostname;parameters>’

in which hostname is the name of the user host
that a literal IP address or domain name can rep-
resent. In the original JSIP library, this informa-
tion is stored as a string value, which does not
offer any high-level facilities for running over
different IP networks. 

Our experiences show that the original string
mechanism can contain IPv6 addresses; other
functions fail when trying to manage those
addresses in the correct context. Extensive mod-
ifications were required for adapting to IPv6,
lacking any methodology for supporting them
now and in the future. Therefore, we introduced
the new class structure instead of the original
string value. SdpMessage represents the descrip-
tion of a multimedia session using SDP.5 Jointly

with Payload_Type, it provides support for man-
aging SDP. The main class for supporting UA cre-
ation is SipClient, which offers the required
characteristics for the UA clients (UAC — a client
application that initiates the SIP request), as well
as for UASs.

Porting JSIP to IPv6
Java 1.4.0/1 lets the user create connections
transparently to both IPv4- and IPv6-enabled
nodes. In most usual services development, we do
not need to modify legacy applications for class-
es that deal with IP communications because of
the built-in support this version of Java provides.
Java 1.4 uses the abstract Factory pattern, which
provides a method for creating and managing
generic IP addresses, independently of the type of
network for dealing with different IP address
types. Java 1.4.0/1 extends the generic IP address
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Figure 1. JSIP class message-processing diagram. This figure shows the main classes of the JSIP library
organized around SipMessage, and identifies key classes added to produce a generic SIP library that
runs on both IPv6 and IPv4 networks.
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class InetAddress with two new classes,
Inet4Address and Inet6Address, which repre-
sent IPv4 and IPv6 addresses, respectively. Thus,
we do not need to specify the type of IP address we
want to connect with. The variable java.net.
preferIPv4Stack lets us set user and application
preferences for how to handle addresses when we
can reach a host name using multiple IPv4 and
IPv6 addresses. The end application developers
have to specify their preferences only once; after
that, Java automatically and transparently selects
a suitable IP address.

Despite Java’s flexibility with regard to IPv6
addressing, we had to modify the JSIP library to
handle some major issues in order to properly sup-
port IPv6. We divided this work into four steps —
bug fixing, SIP feature completion, migration to
IPv6, and IPv4–IPv6 interoperability.  

Table 1 summarizes the components we created
for porting SIP to IPv6 and the resources required
for completing each component. The first column
represents the different elements handled during
the porting process: 

• original JSIP library (JSIP at http://jsip.
mitre.org); 

• debugged and enhanced JSIP library (JSIP+ at
jsip.mitre.org), which we created by improving
the original JSIP library, fixing bugs, and
adding some missing key facilities; 

• JSIP version enabled for working over IPv4 and
IPv6 (JSIP IPv4-6); 

• test suite for validating the JSIP code; 
• SIP proxy for performing SIP gateway func-

tions; 
• UA based on the JSIP library; and 
• videoconference application used for validat-

ing the global service.  

The second column details the packages provided
for each element, which shows the relevance of
each part of the library (events management, mes-
sages management, proxy classes related, and
general facilities provided by Util and JSIP).
Columns 2 through 5 show the number of class-
es, methods, and lines for each package; column
6 shows the hours required for designing and cod-
ing each element; and the last column provides
additional information for understanding previ-
ous columns.

After analyzing the problems of porting a JSIP
library, we dealt with the deployment of a SIP ser-
vice over heterogeneous transports based on the
library we created.

Bug Fixing and 
Implementation Enhancement 
We began the project by studying the original JSIP
library. Our first work was the creation of a test
suite with 160 test cases for direct UA-to-UA com-
munication, UA registration on a register server,
and tests for evaluating the implementation
against incorrect SIP messages. Four major defects
(parsing incorrect messages, parsing SIP extension,
managing SDP messages, and SipRequestMes-
sage management) caused approximately 30 mod-
ifications. In addition to the 10 hours of coding
and design for the test suite, debugging the detect-
ed errors required another 20 hours, which we
included during 60 working hours under the JSIP+
version (see Table 1).

JSIP provides a group of classes for managing
SDP bodies embedded in SIP messages, which is
organized around the SdpMessage class. We
enhanced and adapted this set of classes to pro-
vide IPv6 support, as well, by providing code for
dealing with IPv4 and IPv6 addresses in SDP mes-
sages. We added a Payload_Type class to describe
the flow of multimedia in the SDP description
body. 

Modifications for IPv6
A driving idea of our work from the very begin-
ning was to provide high-level support based on
key features of object-oriented software, instead
of just performing thousands of isolated modifica-
tion on the original code using the  if statement.
We modified four main elements in the JSIP library
to adapt them to work with IPv6:

• SIP URIs. JSIP originally managed URIs as
strings. To simplify IP address management,
we substituted both IPv4 and IPv6 addresses
for a set of classes organized around the new
SipUri class (see Figure 1), which is based on
the IpAddress class. SipUri class derives the
three main classes we will use: IpAddress4
for IPv4 addresses, IpAddress6 for IPv6
addresses, and UnknownAddress for nodes
that IPaddress has not yet resolved. The
IpAddress stores IP addresses in SipUri
independently of the specific address type.
When a UA or SIP proxy needs to discover
the specific IP address type, it can use stan-
dard Java methods (InstanceOf) to deter-
mine if the address is IPv4, IPv6, or still unre-
solved. Meanwhile, the application logic
where the IP addresses are not used or modi-
fied can be easily coded, managing the
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abstract class IpAddress.
• SIP messages. Socket connections receive SIP

messages, which must be parsed to identify
each message’s corresponding elements. The
JSIP library provides several classes (SipMes-
sage, SipUri, and SipVia, for example) that
perform such parsing, but we enhanced these
classes to allow parsing of strings of any IPv6
addresses included in SIP messages.

• Enhanced SDP support. The original SdpMes-
sage class can manage IPv4 addresses only
when they are included in the SDP body. We
modified such classes to allow them to man-
age IPv6 classes as well. In this case, we reused
the IpAddress class instead of the original
String  attribute of  the SdpMessage class (see
Figure 1). 

• UA support. The classes JSIP provides for sup-
porting UA creation must also manage IP
addresses. The same code might work over dif-
ferent IP stacks, so the UA must identify which
IP address to use depending on the underlying
network; it then fills in the corresponding field
with this information. We modified the class
SipClient by adding code for detecting the
stack type and generating the proper IP address
for completing the connection.

These modifications concentrate on a few class-
es (SipUri, IpAddress, and SdpMessage) and the
code that deals with the type of IP network
inside the JSIP library.  

Deploying SIP Over
Heterogeneous Networks
To validate our approach with the modified JSIP
library’s IPv4 and IPv6 capabilities, we created a
test scenario (shown in Figure 2) with a simple
audio-stream application that sent previously cap-
tured audio over both IPv4 and IPv6 networks
using RTP packets.

This let us test the feasibility of our proposed
approach without dealing with the complexity of
full-flagged multimedia applications. Using the
JSIP library to build SIP elements facilitated this
task because the SIP elements created with this
library work in both network types. Nevertheless,
when SIP elements are located on different types
of networks, we need a suitable gateway mecha-
nism to allow UAs to interconnect that cannot
connect directly due to the underlying networks’
incompatibility.

Figure 2 illustrates the test scenario, in which
the streaming application client located in an IPv6
network connects to a server in an IPv4 network.
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Table 1. Code structure and effect.

Element Internal Classes Methods Lines of code Effort Comments
packages (hours)

JSIP Event 3 14 262 60 Includes 20 hours for fixing bugs and
40 hours for enhancing the original JSIP library.

Proxy 5 17 414
Util 6 23 554
JSIP 29 490 10,736

52 606 13,639
JSIP IPv4-v6 Event 3 14 262 10 Time spent providing IPv6 support.

Messages 9 45 693
Proxy 5 17 414
Util 6 23 554
JSIP 32 499 11,296

55 615 14,211
Messages 9 45 681
JSIP 28 456 9,080

51 557 10,991
Test suite Test 3 17 992 10 Time dedicated to designing and coding the test 

cases; another 10 hours went to learning 
Junit testing tool.

User agent 1 39 1,425 40 30 hours for creating graphical interface 
with 6,878 lines, 185 methods, and 12 classes.

JSIP proxy 4 30 928 5



We used a NAT-PT service located between IPv4
and IPv6 networks to direct the data stream
between client and server. 

The translator allows IPv6 hosts to communi-
cate with IPv4 hosts. An example of such applica-
tion is NAT-PT.7 A solution for a protocol in an IP
address embedded in the payload is to use an ALG,
which modifies the application payload and per-
forms other necessary functions to make the appli-
cation work.

In this scenario, we configured the NAT-PT by
hand, which let us account for the specific appli-
cation used for the evaluation. To simulate a real-
istic scenario, however, we defined outbound prox-
ies at each network and used a third, based on a
dual-stack node, to interconnect both outbound
proxies and provide SIP gateway functionality. In
our scenario, taking advantage of our JSIP
library’s facilities, configuration files perform
proxy and UA configuration, so in this scenario,
the code should not be modified to work over the
underlying network.

Finally, when the session negotiation ends, the
multimedia flows are interchanged using NAT-PT
facilities. Other interconnection strategies can be
applied at the application layer independently of
the SIP proxy. 

Implementing a SIP UA
We created a user interface for facilitating UA
evaluation and integration into the scenario. We
used this user interface for informal evaluation of

the whole scenario before integration with the
audioconference application. The resulting code
has several key characteristics:

• We can configure it using standard SIP mech-
anisms.

• It can run on IPv4 and IPv6 networks.
• Error sources were reduced because we did not

introduce code that was specific to IPv4 or IPv6.

The resulting UA is portable and configurable
without working on the code during any specif-
ic deployment.

Implementing a SIP Proxy
As mentioned earlier, SIP proxies are elements
that route SIP requests to UASs and SIP respons-
es to UACs. A request can traverse several prox-
ies on its way, and each proxy makes routing
decisions, modifying the request before for-
warding it to the next element. Responses are
routed in reverse order through the same set of
proxies the request traverses. SIP defines two
types of proxies: 

• A statefull proxy is purely a SIP transaction-
processing engine. Its behavior is modeled in
terms of the server and client transactions,
which are registered for controlling future mes-
sage interchanges.  

• A stateless proxy is a logical entity that does
not maintain the client or server transaction
state machines defined in this specification
when it processes requests. 

SIP proxies are common elements in SIP ser-
vices, and administrators can use standard SIP
mechanisms to configure them for all UAs in a
network.

To provide a SIP gateway, we need a SIP net-
work component that performs a forwarding task
between IPv4 and IPv6 without modifying the
logic of the end-to-end negotiation. Stateless
proxies include such functionality. 

Table 2 summarizes statefull and stateless proxy
functionalities and those that the JSIP proxy
implements, showing which facilities are required
(�) and which are not (✗) for each type of SIP
proxy, and for the gateway proxy. As the table
shows, a gateway proxy’s requirements are a sub-
set of the requirements of the standard stateful
proxy. Thus, any properly configured stateful
proxy build using our JSIP library will serve as
gateway proxy. In our scenario, application-level
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Figure 2. Interworking infrastructure. This figure presents a future
scenario in which end users on different network types cannot
communicate directly. Our JSIP library aims to facilitate transparent
communication using a standard SIP element build without any code
modifications.
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interconnection can be performed by applying any
of the IPv4-IPv6 transition mechanisms defined
by the IETF. 

Further work might entail coordinating SIP and
applications strategies, taking into account infor-
mation interchanged by SIP such as the SDP prim-
itives used for Session Description. Adding extra
functionalities to the proxy server lets it look into
this information interchanged by SIP and coordi-
nate with ALGs.

Conclusions
Despite the problems detected during this work,
Java offers many porting facilities that may be
used for running code over IPv6 and/or IPv4.
Java 1.4.0 allows the user to transparently create
connection over both IPv4 and IPv6. The object-
oriented paradigm made it easy for us to create

the SipUri and related classes, which facilitate
the management of IP addresses independently
of their realm. The use of patterns,6 as in Java
1.4, simplifies the generation of code that could
work over IPv4 and IPv6 networks. This leads to
clearer code, in which specific sentences are con-
centrated on clearly identified classes, and meth-
ods avoid the use of if statements common to
other methodologies. 

The use of an existing, open-source, mature,
and well-structured library facilitated our work
and allowed us to work efficiently, concentrating
on our porting problem.
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Table 2. Statefull and stateless proxies’ functionalities.The ✔ indicates 
which facilities are required, and the ✗ indicates those that are not required.

Function Stateful Stateless Gateway Proxy
Process request (basic functionality)

1. Validate the request � � �

1.1 Check reasonable syntax � � �

1.2 Check URI scheme � � �

1.3 Process 'Max-forwards' header � � �

1.4 Loop detection � � �

1.5 Process 'Proxy-require' header � � ✗

1.6 Process 'Proxy-authorization' header � � ✗

2. Preprocess routing information � � �

2.1 Process 'Route' header � � �

2.2 Process 'Record-Route' header � � �

3. Determining request target � � �

4. Request forwarding � � �

4.1 Update the request-URI � � �

4.2 Postprocess routing information (local routing policy) � � �

4.3 Add a 'Via' header field value � � �

4.4 Add a 'Content-length' header field if necessary � � ✗

4.5 Forking proxy: parallel or sequential � ✗ ✗

4.6 Set timer C � ✗ ✗

Process response (basic functionality)
1. Find the appropriate response context � ✗ ✗

2. Update Timer C � ✗ ✗

3. Remove the topmost Via � � �

4. Choose the best final response � ✗ ✗

5. Aggregate authorization field values if necessary � � ✗

6. Optionally rewrite 'Record-route' header field values � � �

7. Forward the response � � �

8. Handle transport errors � � �

9. Generate any necessary 'Cancel' request � ✗ ✗
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