
A novel architecture supports

flexible integration of IP-based

telephony services with

legacy circuit-switched

services by defining the

means for convergence

at the communications-control

layer of the network, rather

than the transport layer.

A VOICE OVER
IP SERVICE
ARCHITECTURE
for Integrated
Communications

DANIELE RIZZETTO AND CLAUDIO CATANIA

Hewlett-Packard Laboratories

Voice over IP has paved the way for a global approach to designing
communication service platforms, but the real driver is the con-
vergence between heterogeneous communication network tech-

nologies. Schulzrinne1 considered some of the problems arising from this
convergence and described possible scenarios for the evolution of the cur-
rent communication world. The integration needs of existing systems slow
down the introduction of new technologies and communication tools. Inte-
grating heterogeneous networks at the communication-control layer can
speed up this process. Integrating the intelligent network (IN)2 and the
Internet is a key step in this direction.

This article advances a high-level abstraction for integrating IP-based tele-
phony intelligent services with legacy circuit-switched telephony IN services.
We do not propose new protocols; rather, we present a novel service architec-
ture, its components, and their behavior. We focus on International Telecom-
munication Union Recommendation H.323 for VoIP3 (see the sidebar “H.323:
An Overview” on the next page) and its central network component, the gate-
keeper. In particular, we describe the architectural design and findings of the
Hewlett-Packard Laboratories Bristol (HPLB) gatekeeper, an experimental pro-
totype implemented on top of an H.323 platform. We also describe a practical
demonstration of interoperation between the Internet and the IN.

ARCHITECTURE RATIONALE
Our proposed architecture takes advantage of VoIP’s flexibility by defining
the means for convergence at the communications-control network layer,
rather than the transport layer. The ever-growing availability of communi-
cation networks that offer similar functionality using different technologies
suggests the need for a high-level abstraction to execute the services inde-

53IEEE INTERNET COMPUTING 1089-7801/ 9 9 /$10.00 ©1999 IEEE h t tp ://computer.org/in terne t/ MAY • JUNE 1999

IN
TER

N
ET TELEPH

O
N

Y

I N T E R N E T T E L E P H O N Y

54 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

pendent of the user’s network connection. Our
approach defines a network-independent service
environment into which different communication
stacks can be plugged. Uncoupling the protocols
from the platform is the first step toward convergence
at the control layer.

With VoIP, communications services are more log-
ically implemented in terminals than in centralized ser-
vice components.4 This is because IP terminals are far
more powerful and intelligent than traditional tele-
phones and provide better user interfaces. As the
migration to IP terminals gets under way, more ser-
vices will be implemented in devices at the edge of the
network. Nevertheless, some services implement func-
tionality that cannot run on the client side. Among

them are call routing, directories, and services that suf-
fer from the “always-on” problem of client end termi-
nals, which stems from the fact that VoIP terminals are
not always on and connected to a network. Our
approach, although essentially server-based, acknowl-
edges the “intelligence at the edge” vision and supports
it by offering an entirely IP-based platform easily acces-
sible by smart terminals.

Integrated service platforms must provide services
that end users can easily access and configure.5 The
standardized access provided by IP is instrumental
in achieving this goal, but the service model has to
enable this capability. Our agent-based approach to
provisioning communication services lets users mod-
ify the logic of their services and decide how service

H.323 is an ITU umbrella Recommendation for multimedia
communications over local area networks (LANs) that do not
provide a guaranteed quality of service (QoS)1 (for a concise
introductory tutorial see DataBeam’s “A Primer on the H.323
Series Standard”2). The standard covers point-to-point com-
munications and multipoint conferences. It addresses call con-
trol, multimedia management, bandwidth management, and
interfaces between LANs and other networks.

Architecture
The Recommendations are still under development (H.323v2
was approved in January 1998), but some basic concepts
are widely accepted. The architecture elements are

■ User terminals. Terminals are the LAN client endpoints
that provide real-time two-way communications.

■ Gateways. GWs translate signaling and media
streaming exchanged between H.323 and PSTN
endpoints.

■ Multipoint control units. MCUs enable conferencing.
■ Gatekeepers. GKs are responsible for call authorization,

address resolution, and bandwidth management. They
intercept call signaling between endpoints and provide
“signaling-based” advanced services.

Terminals, gateways, and MCUs are generically addressed
as endpoints. GKs provide those services that cannot be
decentralized and implemented by endpoints.

The Registration Admission Status (RAS) protocol is the
key GK protocol. RAS messages are carried in User Data-
gram Protocol (UDP) packets exchanged between an end-
point and its GK. When an endpoint is switched on, it sends

an RAS registration request (RRQ) to the GK. This message
contains information such as terminal transport address, user
alias, and E.164 telephone number. If the GK accepts the
registration, it sends a Registration Confirm message (RCF);
otherwise, it sends a Registration Reject (RRJ) message. The
GK and its registered endpoints are called a zone.

Call Setup Life Cycle
The H.323 call setup life cycle can be split into three phas-
es (named according to the protocol used):

RAS. To make a call, an H.323 endpoint sends an RAS
Admission Request (ARQ) message to the GK. This message
contains the destination alias, which is the name or phone
number of the user to be contacted. The GK may grant per-
mission for the call by sending back an Admission Confirm
(ACF) message containing the actual transport address
associated with the called party alias. The GK may also
reject the request with an Admission Reject (ARJ) message
for a variety of reasons, such as “not enough bandwidth”
or “security violated.” Therefore, during this phase the GK
accomplishes three functions: address translation, call
authorization, and bandwidth management.

Q.931. This phase is derived from ISDN end-to-end call
setup signaling (SETUP, PROCEEDING, ALERTING, CON-
NECT) and provides the logical connection between the two
endpoints—the calling party and the called party. In H.323,
Q.931 is implemented on top of TCP.

H.245. During this phase, the two endpoints exchange
capabilities. They agree on the nature of the information

H.323: AN OVERVIEW

A V O I P A R C H I T E C T U R E

55IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

objects will behave when reacting to events sent
from the network and dialoguing with other enti-
ties involved in the communication session. A sim-
ilar approach is the call management agent.6

Letting end users configure their own services
requires careful analysis of the language used to
implement them because badly programmed logic
can harm the network’s overall functionality. A well
thought-out language that is user-friendly, can han-
dle complex and advanced services, and can offer the
appropriate reliability features required by commu-
nication networks has yet to be devised. Our pro-
posal, while offering a simple rule-based language to
program the service logic, implements peer-to-peer
negotiation in the service platform among all the

service objects of the parties involved in the com-
munication session. We believe this approach solves
the above-mentioned problem and takes a step
beyond the traditional telephony world service
model, in which the called party plays a dominant
role in triggering and executing services.

SERVICE ARCHITECTURE
The main components of the service architecture are
shown in Figure 1. The GK platform provides a high-
level application programming interface (API) that
implements an abstraction layer for executing services
independent of the underlying networks. Each GK
platform has a local service platform in which service
objects are executed. A service object implements ser-

they will exchange through the media channel (audio,
video, or data) and its format (for example, compression
or encryption). H.245 is implemented on top of TCP.

After these three phases, the Real-Time Protocol/Real-Time
Control Protocol (RTP/RTCP, running on top of UDP) media
channels between the two endpoints are opened according
to the capabilities exchanged, and the actual media com-
munication starts. Data communications are based on the
T.120 specification. During the call, dual-tone multifre-
quency (DTMF) touch tones are transmitted over the LAN
through the H.245 User Input Indication message.

Call signaling can be routed through the GK or routed
directly between the endpoints. RAS is, by nature, GK-rout-
ed. A GK can decide to route Q.931 and H.245 through
itself, so that it can act as a proxy between endpoints. If the
GK intercepts the signaling it can perform call management,
maintaining a list of ongoing H.323 calls in order to keep
endpoints’ state or to provide information for the bandwidth
management function. In any case, the media flows direct-
ly between endpoints because the GK is just a signaling
entity and cannot be called.

New Features
H.323v2 uses the H.235 standard to address authentica-
tion, integrity, privacy, and nonrepudiation.

It has also introduced the Fast Connect procedure, which
allows endpoints to expedite the exchange of terminal
capabilities by encapsulating them in Q.931 messages, thus
avoiding the slow H.245 negotiation.

Supplementary services have been defined by the
H.450 series. H.450.1 is the signaling protocol between

endpoints for the control of supplementary services;
H.450.2 defines call transfer of an established call; and
H.450.3 defines call diversion for implementing call for-
warding unconditional, call forwarding busy, call for-
warding no reply, and call deflection. New services can
be introduced through the standardization of a new
H.450.X series. The series puts in place signaling mecha-
nisms to control services, but do not define how the logic
behind them should be implemented.

Beyond Signaling
The Internet Engineering Task Force proposal for VoIP sig-
naling is the Session Initiation Protocol.3 SIP goes beyond
the simple signaling of voice communications. It focuses
on setting up generic communication sessions, separating
this phase from channel allocation and media transmis-
sion. SIP uses the REGISTER message to register to a SIP
server and the INVITE message to initiate a call. This mes-
sage can be sent directly to a SIP client or SIP server,
which is comparable to a H.323 GK. If the SIP server is a
proxy server, it will route the call through itself; if it is a
redirect server, it will redirect the call to the actual desti-
nation.

REFERENCES
1. ITU-T Rec. H.323, “Visual Telephone Systems and Equipment for Local

Area Networks which Provide a Nonguaranteed Quality of Service,”

Geneva, Switzerland.

2. DataBeam Corp., “A Primer on the H.323 Series Standard,”

http://www.databeam.com/h323/h323primer.html.

3. M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session Initiation

Protocol,” Internet draft, IETF, Jan. 1999; work in progress.

I N T E R N E T T E L E P H O N Y

56 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

vices for a particular user, who can modify and con-
figure them at any time. For each user there is a ser-
vice object stored in a home server, which is shared
among several users. The server can be located any-
where in the network. When a user changes location,
the local GK-service platform accepts the registration
and downloads the user’s service object from the
home server in which the object is stored.

HOME SERVER
The home server contains the service objects and
provides them when requested by a service platform.
It plays an essential role in supporting user and ser-
vice mobility, synchronizing multiple instances of
the service objects, and providing access to service
creation environments.

A service object is located using the alias address
of the user to which it belongs. We use the address-
ing scheme adopted by the Internet Engineering
Task Force’s Session Initiation Protocol (SIP),7 in
which users are identified by a structured e-mail-like
alias: userName@HomeServer. When a service plat-
form needs to download a user’s service object, it
uses this structure to locate HomeServer and down-
load the service object of userName.

Obviously, this location mechanism is not valid
when the user’s alias address is outside the adopted
addressing scheme. This is the case for E.164 tele-
phone numbers, which in the Internet do not belong
to any domain and therefore have to be translated
into meaningful structured aliases. Various standards
bodies—in particular, the European Telecommuni-
cations Standards Institute (ETSI) Telecommunica-
tions and Internet Protocol Harmonization over Net-
works (TIPHON) technical body and its Working
Group IV8—are addressing this PSTN/IP integra-
tion issue, and we expect to use their results.

The home server is also responsible for synchro-
nizing multiple requests for the same service object (for
example, when there is more than one call attempt to
the same user). This problem stems from the fact that
the same service object can be accessed by different ser-
vice platforms. It can be solved using a centralized
approach (the home server is responsible for synchro-
nization) or a distributed one (the service objects com-
municate among themselves to avoid inconsistencies).

The home server is also where service objects are
created. In the traditional telephony network, ter-
minals provide a very poor interface (an alphanu-
meric keypad with some extra buttons), and the only
way to configure services is to type cumbersome
sequences of digits. In our solution, a Web-based ser-
vice creation environment (SCE) can offer a user-

friendly GUI-based service configuration. Mizuno
et al. describe a similar approach.9

SERVICE PLATFORM
The service platform controls service objects’ execu-
tion life cycles. Once downloaded from the home
server, the objects are executed locally and receive
events from the underlying communication stacks.

In Figure 1 the GK platform provides the abstrac-
tion layer for events coming from a generic network.
This abstraction requires the identification of com-
monalities between existing and emerging commu-
nication paradigms adopted by protocols used in
wireless, fixed, and VoIP networks. Observe that vir-
tually all of their functionality can be grouped into
three main areas: a registration phase during which
terminals communicate their presence and related
data; an admission phase during which they ask for
a called party’s number translation; and a call signal-
ing phase during which entities exchange messages
to control the actual communication. This distinc-
tion allows us to define a level of abstraction that
enables different communication stacks to be com-
bined into a single platform.

The user objects encapsulated in service objects
(Figure 1) receive fast-changing user information
such as the current user location, the user status
(busy, free, in a call setup, and so on), or the status
of the calls in which the user is involved.

We categorize service objects into three classes.

■ Installed service objects are downloaded at reg-
istration time. They live in the platform until
the user unregisters (Figure 1).

■ Downloaded service objects are downloaded
during a call attempt. They live until the call
terminates.

■ Replica service objects are downloaded when
other instances of the same service object are
already installed into or downloaded to some
other service platforms. They live in the service
platform in which they are downloaded until
the call terminates.

When a user registers with a local GK, the service
platform sends a Notify message to the home serv-
er, downloads the appropriate service object, and
installs it. The Installed service object gets a copy of
the user object (created by the GK as soon as the
user registers) and initiates it to receive events from
the network via the GK and service platform. The
service logic behavior is driven by such events, which
carry information about the user status and status of

A V O I P A R C H I T E C T U R E

57IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

the possible calls in which the
user is involved. Examples of ser-
vices that can take advantage of
this updating process are:

■ International call barring.
When a user tries to place a
call, the call request is passed
to the service object, which
uses its logic and the data
stored in the user object to do
prechecking and decide
whether the call can progress.

■ Presence services. Once the
user registers, the service
object forwards the user’s
location to other applica-
tions, which can start
prescheduled calls or deliver
waiting messages.

When a registered user (for exam-
ple, user A@HomerServerA in
Figure 2) wants to place a call, the GK with which
the individual is registered alerts the associated ser-
vice platform. This platform then checks if the called
party’s service object is installed locally; if it is not,
the appropriate service object is downloaded from
the called party’s home server. At this stage, two sce-
narios are possible.

In the first scenario, the called party is registered
with a different GK (GK Y in Figure 2). In this case
the home server of user B (the called party) creates a
called party Replica service object, which contains a
reference to the Installed called party service object
running in the service platform associated with GK
Y. The replica is downloaded into service platform X
and retrieves an updated user object from the
Installed service object, which is also responsible for
the synchronization between itself and its replica.

In the second scenario, the called party is not reg-
istered with another GK, so its downloaded service
object does not need an updated user object. The
called party’s status indicates that the user is discon-
nected. (This is typical when the service logic routes
the call to a voice-mail system.) Synchronizing
between possible Replica service objects, due to
simultaneous call attempts, is left to home server B.

To summarize, the goal is to involve all service
objects in a call in the same service platform, which
is the one associated with the GK with which the
calling party is registered.

An interesting evolution of the proposed archi-

tecture is intelligent edge devices running a light-
weight version of the service platform. This implies
moving it from the service execution layer to the
user layer (Figure 2) and removing the GK platform
between the device and its service platform. This lets
devices access other service platforms directly, avoid-
ing GK mediation.

SERVICE OBJECT BEHAVIOR
Once the service platform has involved all the ser-
vice objects in the call, the peer-to-peer call negoti-
ation between the objects can start. The calling
party’s service object invokes a “locate” method (part
of the interface of every service object), which choos-
es the correct destination transport address of the
called party. This process could use the user object’s
fast-changing data.

The service logic implemented by the locate
method consists of a set of “if ” conditions then
actions. The condition field contains information such
as time of day, call originator ID, and devices the user
is currently using. Possible actions include return trans-
port address, reject, and request further information.

The called party’s service object can return a single
response or a list of possible options. For example,
when the user is unavailable, the calling party’s service
object can either stop the call or proceed, leaving a mes-
sage with a voice mail system. When the calling party’s
service object gets the response, it can execute more
logic (address postchecking, availability, and so on) and

Methods
service logic

Service object

HomeServerA

Data
user object

Get (ServObjA)

Notify (A, GK)

Reg (UserObjA)

RRQ (A@HomeServerA)

Events

Service object A

Endpoint
A

Service platform

Gatekeeper platform

Figure 1. Service architecture (registration time).

I N T E R N E T T E L E P H O N Y

58 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

then passes the response to the calling party’s terminal
through the service platform.

For privacy and security reasons, the called party’s
service object does not have direct access to the call-
ing party’s user object. However, it can ask the call-
ing party’s service object for information about its
user. During this negotiation phase, the two parties
agree on the media communication type and format.

As described above, the negotiation phase
requires more than a single invocation of the locate
method; therefore, it is more reasonable not to call
the method remotely on the home server but to
transport the whole object through the network.

If Tdownload is the service object downloading time,
Tremote is the transmission delay for a single message,
Tlocal the transmission delay within the platform, and
n the number of messages exchanged between the two
service objects, the negotiation phase overall delay is
T1 = Tdownload + 2*n*Tlocal if the whole object is down-
loaded and T2 = 2*n*Tremote if it is not. Assuming Tlo-

cal is negligible and Tremote ≅ Tdownload, then T1 << T2

when n is significantly large. This is the main reason
for downloading the called party’s service object, even
if this could have an impact on postdial delay.

In addition, service mobility has some security
implications. Since service objects are downloaded
into a foreign service platform, their internal data and
methods should not be completely exposed. To over-
come this problem, service objects could be imple-

mented as empty proxies and their
methods executed via remote calls.
This could be a feature home serv-
er providers make available. Obvi-
ously, security advantages are
obtained at the expense of the per-
formance benefits gained by
downloading the service objects.

Alternatively, host service plat-
forms have to shield local resources
to prevent malicious service objects
from accessing local information
and communicating relevant data
back to the home server or to other
applications. This goal can be
achieved by using authentication
and signed code techniques prior
to the execution. Obviously, inter-
operability between service plat-
forms and home server providers
requires well-defined communica-
tion interfaces and service-level
agreements between them.

PRACTICAL IMPLEMENTATION
Figure 3 (next page) shows the implementation of
the service architecture. Because we wanted our pro-
totype to interoperate with currently available VoIP
clients, the most popular being Microsoft NetMeet-
ing, we chose H.323 as the VoIP protocol.

The H.323 stack handles messages coming from
the IP network. The GK core logic stores information
about ongoing calls (call objects) and registered users
(user objects) into the respective databases (Figure 3).
The components located above the dashed line have
been implemented using Java, taking advantage of the
built-in remote method invocation (RMI) for com-
munication between these components.

HPLB GATEKEEPER
The HPLB Gatekeeper implements the functional-
ities described by the H.323 standard except for
bandwidth management (Figure 4). Its internal
architecture is composed of three functional blocks:
the H.323 stack, the interface layer, and the GK,
which is divided into the Java communication API
and the core logic.

The Java communication API, which sits
between the core logic and interface layer, was
designed to be independent of the underlying com-
munication protocols. This creates an additional
level of abstraction for registration and call admis-
sion (RAS) and Q.931 (call signaling). Thanks to

Home
server

B

Get(ServObjB)

Get (UserObjB)

Call (UserObjA, B@HSB)

"Installed"
Serv.Obj A "Installed"

Serv.Obj B

Notify(B, GKY)

"Replica"
Serv.Obj B

ARQ(B@HSB)

A@HomeServerA

RRQ(B@HSB)

B@HomeServerB

Gatekeeper X

Service
database

layer

Service
execution

layer

User
layer

Gatekeeper Y

Figure 2. Call placing (from A to B).

A V O I P A R C H I T E C T U R E

59IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

this abstraction a variety of protocols can be plugged
into the platform, allowing seamless integration
between different networks.

The interface layer between the H.323 stack API,
which is written in C, and the Java communication
API, is based on the standard Java Native Interface
(JNI) mechanism. This layer can be split into two
major functions: the message dispatcher and the native
methods. The message dispatcher is triggered by call-
back functions coming from the stack API. It instan-
tiates Java objects with the parameters contained in
the received messages and invokes the appropriate
communication API methods to pass these objects.
Native methods simply map requests from the Java
GK logic into H.323 stack API method invocations.

The GK core logic has access to the user and call
databases (Figure 4) that contain data related to reg-
istered users and ongoing calls, respectively. The user
database contains user objects. They contain user
status and basic properties such as user alias, E.164
telephone number, and IP address. The status can
be DISCONNECTED, REGISTERED, BUSY, or SETUP (if
the user is in the call setup phase). The call database
contains call objects, consisting of a call-ID, the ref-
erences of the user objects of all the parties involved
in the call, and the call status. The call status reflects
the Q.931 messages exchanged between the two
endpoints through the GK.

When the GK receives an ARQ, the service plat-
form is invoked to start the service objects’ negotia-
tion. After the response is sent back by the service
platform and the permission for the call is granted,
the Q.931 signaling starts to flow through the GK,
updating the related users and call objects. We route
H.245 directly between the endpoints because it
involves the exchange of a large amount of infor-
mation of little interest to the GK itself.

The HPLB Gatekeeper core logic implements a
simple internal admission policy based on resource
availability. Two parameters, based on network capac-
ity, can be set up at launch time: maximum number
of registered users and maximum number of ongoing
calls. Registrations or call requests that could cause
exceeding these parameters are rejected. Future admis-
sion policies can be based on more complex interac-
tions with firewalls or bandwidth management
servers. These policies could require the interception
of the H.245 flow. In fact, if the GK must allocate
resources to guarantee QoS for a particular media
connection, it should know the UDP port where the
stream takes place. The GK can get this parameter by
intercepting H.245 messages. This parameter is also
useful for monitoring and measurement.

SERVICE OBJECTS
Service objects are stored and provided by the home
server through the following simple RMI interface:

getServiceObject().
releaseServiceObject().

The mechanism for synchronizing multiple instances
of the same service object is implemented within the
home server. The service object Java interface is com-
posed of the following methods:

■ locate() is invoked by the calling party’s service
object onto the called party’s service object to
start call negotiation. In the current implemen-
tation this method has one parameter: calling
party ID (E.164 number or, preferably, the
structured alias when available, that is, when the
call comes from an IP terminal).

■ die() is used to terminate the object life cycle. Nor-
mally, this method is invoked by the service plat-
form when the user unregisters, or by the calling
party’s object to force stop call negotiation. In the
first case, the object is released and the home serv-
er notified. In the second case, the behavior is
more complicated and depends on whether the
object is installed, downloaded, or a replica.

■ freeze() is invoked by an installed service object
located in the service platform associated with
the user’s current GK onto a replica of it (Figure

Call objects User objects

Home
server

Service
objects

RMI

JNI

H.323
API

Service platform

Gatekeeper

Interface layer

H.323 stack

Java

C

C

HPLB Gatekeeper

Calls
in progress

data

Users'
real-time

data

Figure 3. Practical implementation.

I N T E R N E T T E L E P H O N Y

60 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

2). This method is used to temporarily freeze
the replica to avoid conflicts between the deci-
sions made by the two objects, which may
affect the user.

■ unfreeze().
■ release() is invoked by a replica service object to

notify the original installed object that it no
longer exists.

■ getUserStatus().
■ getServiceStatus(). The service status can be nor-

mal or frozen. If a service object is frozen, it is
likely that the other party’s service object will
stop the call.

■ updateUserStatus() and updateCallStatus() are
invoked by the service platform.

H.323v2 can benefit from the service object negoti-
ation. In fact, its Fast Connect procedure coupled
with the prior service object’s call negotiation ensures
that media channels with the optimal characteris-
tics—chosen during this call negotiation—can be
opened just after call setup. This requires passing ter-
minal capabilities to the GK at registration instead
of exchanging them during the H.245 phase, after
service object negotiation. While this feature is
already part of the SIP protocol, H.323 will provide
it in future versions. This is one of the problems that

must be solved when integrating
different protocol stacks under a
common level of abstraction.

It is also worth pointing out
the relationship between H.450
and our proposal. The former is a
signaling mechanism to control
services implementation; the lat-
ter, the logic behind it.

Since service objects are essen-
tially Java objects, we use Java as
the service logic language, with
service logic scripts interpreted by
the Java Virtual Machine. Thus
we do not need a new virtual
machine for interpreting a new
scripting language.

There are several proposals for
a scripting language that handles
calls. The most interesting of
them, from a VoIP point of view,
is the Call Processing Language
(CPL)10 for Internet telephony,
under development by the IPTel
IETF Working Group (see the
article “Programming Internet

Telephony Services” in this issue).
The two main objections to using a normal pro-

gramming language like Java for service setup by end
users are that service creation could be difficult, and
that common languages are too complex for handling
calls. This complexity can easily generate service mis-
behaviors. These drawbacks can be overcome by using
controlled and simple service creation environments.
In this context, we are exploring JavaBeans. JavaBeans
can be manipulated graphically, which can generate
an interesting evolution of the SCE. In fact, home
server providers may make available different classes
that can be directly customized by end users using Jav-
aBeans. Different classes of services may be offered,
from simple static call redirection (to a number decid-
ed by the user) to provision of the whole service object
by an end user with good programming skills (which
actually implements the whole logic).

DEMONSTRATION
The demonstration described here was presented at
the Hewlett-Packard Laboratories review in Bristol
last summer. Its aim is to show the ease of deploying
personalized user services and the potential interac-
tion with IN components, in particular with the ser-
vice control point (SCP), the platform currently used
by telecom operators to offer value-added services.2

Call:
1. RAS
2. Q.931
3. H.245

• CallID
• Caller user obj
• Callee user obj
• Status

Call object

• Name
• IP address
• E164 number
• Status

User object

Calls
in progress

data

Users
real-time

data

Gatekeeper core logic Java

High-level communication API

H.323 stack

Q.931
GK-routed

H.245/RTP

RAS RAS

Direct-routed

Interface
layer

Java

C

Native methods Message dispatcher

H.323
endpoint

A

H.323
endpoint

B

Figure 4. The HPLB Gatekeeper platform.

A V O I P A R C H I T E C T U R E

61IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

The architecture, depicted in Fig-
ure 5, provides Internet call wait-
ing, allowing users to receive
incoming calls through a VoIP
gateway when they are connected
via dial-up and their telephone
line is engaged.

The SCP is simulated by a Java
application running on a machine
connected to a private branch
exchange (PBX), through special-
ized cards supporting the British
signaling standard DPNSS. This
“virtual SCP” communicates with
the GK through Java RMI, but
call requests reach the GK
through the same high-level com-
munication API used by the
H.323 stack. A plug-in makes the
virtual SCP interoperate with the
GK through this API. The H.323
gateway runs on a different
machine connected to the same
PBX. The range of telephone
numbers served by the PBX, con-
nected to the normal PSTN, has
been split: a subrange for the GW
and another subrange for the virtual SCP. Each
extension in the SCP subrange corresponds to an
Internet call-waiting subscriber.

When a call to a subscriber is attempted, the PBX
tries to contact the subscriber telephone number. If
the number is engaged, the virtual SCP is alerted. The
virtual SCP then contacts the GK to find out if the
subscriber is registered (note that the user must have
registered with the same E.164 number). If so, the
process goes on as described: The service platform is
invoked and the personalized user service executed.

The demonstration is limited to Internet call
waiting, so we assume that whenever the called user
is connected via dial-up to an Internet service
provider, the user is also registered to the GK asso-
ciated with the SCP (there is a well-known fixed
binding between them). If the called party is not reg-
istered to that GK, it means that the user is busy in
a PSTN call, and the calling party will get the busy
tone (alternatively, the normal IN call-waiting ser-
vice can be activated).

In our demonstration, the logic in the called
party’s service object is programmed to examine its
own user status. If the user is not busy in a VoIP call,
its IP address is returned. Otherwise, the service con-
tacts a small Java application launched at registra-

tion running on the current user machine and deliv-
ers a popup window, asking the user whether to take
the call (leaving to the client the responsibility to
manage multiple calls), divert it to another IP
address, divert it to a telephone number, or reject it.
To do this, the service platform security manager
implements a dynamic policy that allows a service
object to open a remote connection to the current
machine where the registered user is located.

If the user returns an IP address, the GK allocates
a “phantom” number on the range associated with
the GW. The GK gets this range from the GW at
registration through H.323. The GK returns the
number to the SCP, keeping the association between
the phantom number and the IP address. The vir-
tual SCP communicates with the PBX to divert the
incoming call to the GW phantom number. When
the GW receives the call, it sends an RAS ARQ mes-
sage to the GK with the phantom number as desti-
nation; the GK knows the IP address associated with
that phantom number and connects the H.323 call.

In our demonstration we assume a static rela-
tionship between the SCP and the GK-service plat-
form, and every time a user is connected via dial-up
to the Internet the user registers with that GK. If the
called party can be registered with a GK other than

PSTN

Service
object

Service
object

GK and service platform

Comunication API

SCP plugin H.323 stack

Gatekeeper
Gateway

RMI

IP
network

Services
repository

Java
popup

Modem
pool

SS7
network

SCP

Service
object

Figure 5. A practical demonstration.

I N T E R N E T T E L E P H O N Y

62 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

that associated with the SCP, E.164 number trans-
lation is not a trivial task. In particular, the GK asso-
ciated with the SCP receives, from the SCP, call
requests containing just two parameters: caller ID
and dialed number. It is important to stress that, in
this context, the dialed number is a user identifica-
tion and not a classic E.164 number. If there are no
users registered locally with the E.164 numbers pro-
vided by the SCP, the GK must translate E.164
numbers into structured e-mail-like aliases in order
to locate the home servers and then download the
user objects and service objects. The GK can per-
form this translation in several ways. It can perform
a lookup in a central database or ask other GKs
through the Inter-Gatekeeper Communication Pro-
tocol (IGCP); see H.323 Annex G.3

If the GK can translate these E.164 numbers and
locate the called party’s and calling party’s home
servers, service execution proceeds as usual. If not,
two scenarios are possible:

■ If either the called party’s home server is not
located or the called party is not registered to
any GK, the call is rejected.

■ If either the calling party’s home server is not
located or the calling party is not registered to
any GK, a dummy service object is created to
interact with the called party’s service object.

CONCLUSIONS
VoIP networks have come of age, with significant
investment from key industry players. New network
and communications technologies are dramatically
changing the way services are deployed. There is now
a critical need for services that span heterogeneous
networks, and VoIP, with its extreme openness, will
be a key factor in enabling the communication con-
trol convergence. In the VoIP context, using this
type of active networking through objects down-
loadable into gatekeeper-like servers seems to be a
reasonable way to address the problem.

The architecture presented in this article is a first
step in this direction, and more work in this area is
expected in the future. Users, carriers, and equip-
ment vendors must map future service requirements
and opportunities into an architecture from which
protocols, technologies, and products will be deter-
mined. The transition from a closed, circuit-
switched, usually monopoly- (or oligopoly-) owned
telephone network to a much more open and user-
configurable packet network poses many difficulties.

Our experience shows that integration between
the control elements of traditional and emerging

networks is a powerful tool for rapidly deploying
and offering new services. We believe that approach-
es like ours are suitable for the so-called next-gener-
ation service providers and will replace the existing
closed solutions. ■

REFERENCES
1. H. Schulzrinne, “Re-engineering the Telephone System,” Proc.

IEEE Singapore Int’l Conf. Networks, Singapore, Apr. 1997.

2. J. Garrahan et al., “Intelligent Network Overview,” IEEE

Comm., Vol. 31, No. 3, Mar. 1993.

3. ITU-T Rec. H.323, “Visual Telephone Systems and Equip-

ment for Local Area Networks which Provide a Nonguar-

anteed Quality of Service,” Geneva, Switzerland.

4. D. Isenberg, “The Dawn of the Stupid Network,” ACM

netWorker, Vol. 2, No. 1, Feb.–Mar. 1998, pp. 24–31.

5. C. Low, “Integrating Communication Services,” IEEE

Comm., Vol. 35, No. 6, June 1997.

6. O. Kahane and S. Petrack, “Call Management Agent System

Requirements Function Architecture and Protocol,” IMTC

VoIP Forum, Seattle, Wash., Jan. 1997; work in progress:

ftp://ftp.imtc-files.org/imtc-site/VoIP-AG/VoIP97-010.doc.

7. M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Ses-

sion Initiation Protocol,” Internet draft, IETF, Jan. 1999;

work in progress.

8. “Telecommunications and Internet Protocol Harmonization

Over Networks,” TIPHON, http://www.etsi.org/tiphon.

9. O. Mizuno et al., “Advanced Intelligent Network and the

Internet Combination Service and Its Customization,”

IEICE Trans. Comm., Vol. E81B, No. 8, Aug. 1998.

10. J. Lennox and H. Schulzrinne, “Call Processing Language

Requirements,” Internet draft, Internet Engineering Task

Force, July 1998; work in progress.

Daniele Rizzetto is a member of the technical staff at Hewlett-

Packard Laboratories, Bristol, UK. He graduated in comput-

er science from the University of Padua, Italy, in 1995, and

earned a postgraduate degree in network systems from Cefriel-

Politecnico di Milano, Italy, in 1997. He is interested in the

impact of Internet telephony on traditional telephony and

next-generation service platforms for telecommunications.

Claudio Catania is a senior member of the technical staff at Hewlett-

Packard Laboratories, where he focuses on the impact of dis-

ruptive technologies on advanced communication services. He

received the Laurea degree in electronic engineering from

Politecnico di Milano, Italy, in 1995, and a post-graduate spe-

cialization degree in information technology from Cefriel

(Politecnico di Milano), where he studied mathematical mod-

els for performance evaluation of interconnection networks.

Readers can contact Rizzetto at daniele_rizzetto@hp.com and

Catania at cld@hpl.hp.com.

