SR 4%

-4y —fE L EEAF o
AR B 2 R ICE
LB OEEEE -
B A HERE R
BE e G
B AR E R
HEEREER -

N~ E[)EL\J:

H}u} 113! M

Chapter 4

Arrays, Strings, and Pointers

Checking Duplicate Input

[/ ex3 0.cpp : Checking duplicate iInput
#i ncl ude <i ostreanp

usi ng std::cin;

usi ng std::cout;

I nt mai n()
{
Int al, a2, a3;
cin >> al >> a2 >> a3;
If (al == a2 || al == a3 || a2 == a3)
cout << "Duplicate.\n";
return O;

If We Have 5 Numbers to Compare

/'l ex3 0a.cpp : Checking duplicate input
#i ncl ude <i ostreanr

usi ng std::cin;

usi ng std::cout;

I nt main()
{

int al, a2, a3, a4, ab5;

cin >> al >> a2 >> a3 >> a4 >> ab;

If (al == a2 || al == a3 || al == a4 ||
al == a5 || a2 == a3 || a2 == a4 ||
a2 == a5 || a3 == a4 || a3 == a5 ||
a4 == ab)

cout << "Duplicate.\n";
return O;

0 To reference several data elements of a
particular type with a single variable name.

o Individual items in an array are specified
by an index value.

The first having the index number O.
The last having the index number N-1.

o All the elements of an array are stored in
a contiguous block of memory.

Duplication Check Using Arrays

/'l Ex3_0b. cpp
#i ncl ude <i ostreanp

usi ng std::cout;

usi ng std::cin;

I nt main()

{
int i, j;
bool duplicate = fal se;
I nt a[10];

for (i=0; i1<10; i++)
cin >> ali];

for (i=0; i1<10; i++)
for (j=0; j<10; | ++)
if (a[i]==a[]j] & i!=])
duplicate = true;
I f (duplicate)
cout << "Duplicate.\n";
return O;

Figure 4-1

Index value Index value
for the 2nd element for the 5th element
Array name — Array name —-
Y Y \J \
helghtf0] helght[1] helght[2] helght[3] helght[4] helght[5]
73 62 51 42 41 34

Flgure 4-1

The helght array has 6 elements.

ol nt helght|6];
Because each i nt value occupies 4 bytes in
memory, the whole array requires 24 bytes.

0 doubl e horsepower|[10] ;

Q: How many bytes will be required for this
array?

oconst 1 nt MAX(20);
odouble mles [MAX |;

OO0

Ex4_01.cpp on P.170

cin >> gas[count];
cin >> mles[count];

cout << (mles[i] — mles[i-1])/gas[i];

If you use illegal index values, there are no
warnings produced either by the compiler or at
run-time.

MAX=20, so index values 0~19 are legal.

gas[- 1] and gas[30] are illegal

o To initialize an array in its declaration, you put
the initializing values separated by commas
between braces

I nt apple = 10;
int mles[5] = {1019, 1650, 2197, 2749, 3273};

o The array elements for which you didn’t provide
an initial value is initialized with zero.

This isn’t the same as supplying no initializing list.

Without an initializing list, the array elements contain
junk values.

0 Ex4_02.cpp on P.172

10

o A convenient way to initialize a whole
array to zero is simply to specify a single
initializing value as 0.

Int data[100] ={ 0 };

0 You may also omit the dimension of an
array of numeric type:
int value[] ={ 2, 3, 4} ;

The number of elements in the array is
determined automatically.

11

0 An array of type char is called a character

array.

It is generally used to store a character string.
A string terminates with a null character,

which is defined by the escape sequence \0'.

It is a byte with all bits as zero.

name(4] String termination
character
Y Y
Each character in a string occupies All|ble|r]|t Eli|n|s]|t]e]i \O
one byte
char name|[] = “Albert Einstein”;

Figure 4-2

String Input

o const int MAX(20);
o char name [MAX];

o cin.getline(name, MAX, \n’);

The maximum number of characters

to be read. When the specified
maximum has been read, input stops.

The name of the array of type I
char{] in which the characters
read from cin are to be stored.

L ;

\

The character that is to stop the
input process. You can specify
any character here, and the first
occurance of that character will
stop the input process.

cin.getline(name , MAX, ‘\n’);

Figure 4-3

o It is your responsibility to ensure that the
array is large enough for any string you
might subsequently want to store.

Q: Can the array “char nane[20]” store the
string “1234567890123456789077?

0 The maximum number of characters read

is MAX-1 (rather than MAX),
to allow for the *\ 0’ character to be appended.

0 The ‘\n’ isn’t stored in the input array
name

14

0 You may also use cin to input a string, but
please note that the delimiter of cin is
whitespaces.

Q: If you supply “Albert Einstein”, what will
“cin >> nane” store into the string nanme?

0 Ex4_03.cpp on P.176
String length
\II

15

0 An array can also have more than one
index value,

in which case it is called a multidimensional
array.

double matri x[3][7];
matri x[2][4] = 10.7

0 Note that a two-dimensional array in
native C++ is essentially a one-
dimensional array of one-dimensional
array.

16

Initializing Multidimensional Arrays

o Initialize a two-dimensional array
Int data [2][4] = {
{1, 2, 3, 5},
{ 7, 11, 13, 17}
};
0 You can omit initializing values in any row
Int data [2][4] = {
{ 1, 2, 3 },
{ 7, 11 }

17

o Initializing a whole array with zeros.
int data[2][4][6] ={ 0 };

o Storing Multiple Strings (2-dim char array)
char stars[][80] = { “Robert Redford”,
“Hopal ong Cassi dy”,
“Lassi e”,
“Slim Pi ckens”,
“Boris Karloff”,
“diver Hardy”
};
o Note that you cannot omit both array dimensions.
-cll-hfg ri%htmost dimension(s) must always be
erined.

18

0 Since the while loop in Ex4 01 is executed
at least once, replace it with the do-whi | e

loop introduced on P.152. Be sure to test

whether the loop condition allows users to
input MAX number of gas and ni | es.

0 Deadline: 17:00, October 16th,

Homework

o Modify your previous homework about
factorization to represent the output as:
m24 =273 * 3
w18 =2 * 372

372 stands for 32

20

0 Date: Oct. 23rd (Tuesday)
oTime: 14:10-16:00

o Place: H-103

0 Scope: Chapter 2, 3, 4 (arrays)

0 Open book.
o Turn off computers and mobile phones.

21

>3-
0k

it}

E ::/‘_‘IH}%E‘//W’ ’
SOLID:PEA = YT
U TR TR 22 4
I R -

Some Examples Using Arrays

0 Sorting

o0 Fibonacci Sequence

0 Coin Tossing

0 Decimal to Binary Conversion
o Binary to Decimal Conversion

23

Sorting

o Input a sequence of numbers
0 Rearrange them in ascending order.

o For example:
= Input: 1, 3,5,7,2,4,6
= Qutput: 1, 2, 3,4, 5,6, 7

FExchange Sort

(3
9] [s]
<«

Compare 9 to 5;
O is greater than 5 so swap them

FExchange Sort

9 7] |2
s U 4

Compare 5 to 7;
5 is smaller than 7 so leave them alone

FExchange Sort

ra
5

9 |7 2
D S 4

Compare 5 to 2, 5 is greater than 2 so
swap them

FExchange Sort

Notice that 2 is where it belongs

Start back at the second element...

FExchange Sort

(4
9] L7] Is]

<«

Compare 9 to 7;
O is greater than 7 so swap them

FExchange Sort

7] 9] |5
D U 4

Compare 7 to 5;
7 is greater than 5 so swap them

FExchange Sort

Notice that 5 is now in the right place

Start back at the third element

FExchange Sort

Compare 9 to 7;
O is greater than 7 so swap them

FExchange Sort

End of n-1 pass, sorting is done.

const int MAX = 4; Sﬂﬁlpl@ COde

int data[MAX] = {9, 5, 7, 2};
int i, j, temp;

(exchange_sort.cpp)

cout << "Before soring:\t";
for (|=O, |<MAX, i++)
cout << data[i] << '\t';

for (j=0; j<=MAX-2; j++)

{
cout << endl << "Round " << j+1 << ":\t";
for (i=j+1; i<=MAX-1; i++)

{
if (data[j] > data[i])
{
temp = data[j]; data[j]=datali]; data[i]=temp;
b
b

for (i=0; i<MAX; i++)

cout << data[i] << '\t'; 34

Example: Coin Tossing

0 A coin has two sides — Head/Tail
= 0/1

0 Repeat tossing the coin 20 times

o Count the occurrences of Head and Tail,
respectively.

35

Random Number Generator

orand()

= The function returns a pseudorandom
integer in the range 0 to RAND_MAX (32767)

[/ Print 5 random nunbers.

for (int i =0; i <5; i++)
cout << rand() << endl;

36

o With the same seed, the program will get
the same result at each execution.

0 Use srand() and choose the current time
as the seed.

#1 ncl ude <tinme. h>

srand((unsigned) tinme(NULL));

for (int 1 =0; 1 <5; I++)
cout << rand() << endl;

37

#i ncl ude <i ostreanr Sample COd€

#i ncl ude <tine. h>

usi ng std::cout; (COiﬂ_tOSSiﬁg-Cpp>

usi ng std::endl;

I nt main()

{
int toss[2] ={ 0 }; // O for Head; 1 for Tail
int i; /'l coin tossing

srand((unsi gned) tinme(NULL));

for (int k = 0; k < 20; k++)

{
I = rand() % 2;
toss[i] += 1;

cout << toss[0] << " Heads and " << toss[1l] << " Tails.\n";
return O;

38

0 Fibonacci sequence
F[0] = 0, F[1] = 1, F[n] = F[n-1] + F[n-2]
01123581321 345589 144 ...

O Lucas sequence
L[0] = 2, L[1] = 1, L[n] = L[n-1] + L[n-2]
2134711182947 76123 199 ...

0 You may write a program to verify
L[n] == F[n+2] - F[n-2]

39

Fi bonacci

sequence.

0112358 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Lucas sequence:

21347 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349

L[2]= 3
L[3]= 4
L[4= 7
L[5]= 11
L[6]= 18
L[7]= 29
L[8]= 47
L[9]= 76
L[10] = 123
L[11] = 199
L[12] = 322
L[13] = 521
L[14] = 843
L[15] =1364
L[16] =2207

L[17] =3571

F[4= 3
F[51= 5
F[6]= 8
F[7]1= 13
F[8]= 21
F[9]= 34
F[10]= 55
F[11]= 89
F[12] = 144
F[13] = 233
F[14] = 377
F[15] = 610
F[16] = 987
F[17] =1597
F[18] =2584
F[19] =4181

FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
F[10] = 55
F[11] = 89
F[12] =144
F[13] =233
F[14] =377
F[15] =610

LN AR ONFO
T T T T TR T TR T TR VT

AP WOWOWOIWNEFELO

WN -

3 == - 0

4 == -1

7 == -1

11 == 13 - 2

18 == 21 - 3

29 == 34 - 5

47 == 55 - 8

76 == 89 - 13
123 == 144 - 21

199 == 233 - 34
322 == 377 - 55
521 == 610 - 89
843 == 987 - 144
1364 == 1597 - 233
2207 == 2584 - 377
3571 == 4181 - 610

40

int n = 0;
BT] Sample Code
int F[M {0, 1};

o (nea ne e (fibonacci.cpp)

{

L[n] = L[n-1] + L[n-2];
F[n] = F[n-1] + F[n-2];
}
cout << "Fibonacci sequence: " << endl;

for (n=0; n<M n++)
cout << F[n] << " ";
cout << endl;

cout << "Lucas sequence: " << endl;
for (n=0; n<M n++)
cout << L[n] << " ";

cout << endl << "=================—=—=—======" << endl;

for (n=2; n<M 2; n++)

cout << "L[" << setwW2) << n << "]=" << setWm4) << L[n] << "\t"
<< "F[" << setwW(2) << nt+2 << "]=" << setw4) << F[n+2] << "\ t"
<< "F[" << setW2) << n-2 << "]=" << setW3) << F[n-2] << "\t"
<< L[n] << (L[n]==F[n+2]-F[n-2]?" == ":" 1=")
<< F[n+2] << " - " << F[n-2]
<< endl;

41

Decimal to Binary Conversions

0 dec2bin.cpp

0 Octal
= dec2oct.cpp

o How about septenary?

0 Hexadecimal
= dec2hex.cpp
= dec2hex_v2.cpp

42

Binary to Decimal Conversion

/'l bin2dec. cpp
PENIRBINOEI (0’ | '0' [0’ |'0' ['0' ['1' |'0' |'1'
usi ng std::endl;

PICECIL S 48 (48 48 148 (48 149 148 149

usi ng std::cin;

nt min0) o o 0 0 0 1 0 |1

{
short i;
char b[9];
cout << "Please input a binary string -- ";
cin >> b;
for (i=0; i<8; i++)
b[i] -= 48; /1 "0 = 48

for (i=0; i<=6; i++)
b[i+1] = b[i] * 2 + b[i+1];

cout << static_cast<short>(b[7]) << endl;
return O; 43

0 Exercise:

Improve bin2dec.cpp so that it can accept
shorter binary digits such as 1101.

Bonus: Users can input binary strings such as
“1101 1100” or simply “101”. Invalid input
such as "1201 1100”" or "1101@1111" will be
rejected with a warning message.

0 Homework
oct2dec.cpp

hex2dec.cpp

44

AR RALY

T H

0 Date: October 19t (Wednesday)
oTime: 17:00-18:30
0 Place: #{A311

0 g A+ 2 AR A B S(EE — 1y KRl

P o

45

H BRI
BT RERE
AGRFER i
RE =] -

o Each memory location
which you use to store a
data value has an address.

o A pointer is a variable that
stores an address of
another variable (of a
particular type).

e.g., the variable pnunber
IS @ pointer

It contains the address of
a variable of type i nt

We say pnunber is of type
‘pointer to i nt'.

3000
3004
3008
300C

NYUNNEEE

o0 oTw
nonon
RhohRE

pnumber=0x3000

47

o To declare a pointer of type int, you may use
either of the following statements:
| nt* pnunber;
| nt *pnunber;

o You can mix declarations of ordinary variables
and pointers in the same statement:
I nt* pnunber, nunber = 99;
| nt *pnunber, nunber = 99;
Note that nunber is of type i nt instead of pointer to int.

o It is a common convention in C++ to use variable
names beginning with p to denote pointers.

48

The Address-Of Operator

o How do you obtain the address of a
variable?

= pnunber = &nunber;
o Store address of nunber in pnunber

&number ==

Address: 1008

v
pnumber number

1008 = 99

pnumber = &number;
Figure 4-5 (p.182)

O i nt nunber (0);
Ol nt* pnunber (&unber);

O i1 nt* pnunmber = NULL;
Oi1nt* pnunber = O;
No object can be allocated the address 0, so address O
indicates that the pointer has no target.
Visual C++ suggests you to use nul | pt r, but this is not
supported by g++, so I dont recommend.
0 You could test the pointer
| f (pnunmber == NULL)
cout << endl << "pnunber is null.";
| f (!pnunber)
cout << endl << "pnunber is null.";

50

0 Use the indirection operator *, with a
pointer to access the contents of the
variable that it points to.

Also called the “de-reference operator”

0 Ex4_05.cpp on P.184
*pnumber += 11;
numberl += 11;
numberl = numberl + 11;

51

Why Use Pointers? (P.183)

0 Use pointer notation to operate on data
stored in an array

0 Enable access within a function to arrays,
that are defined outside the function

0 Allocate space for variables dynamically.

52

char* proverb = “A stitch in tinme saves nine.”;

o This looks similar to a char array.
char proverb[] = “A stitch in tinme saves nine.”;

o It creates a string literal (an array of type const
char)

with the character string appearing between the quotes,
and terminated with \0

o It also stores the address of the literal in the
pointer proverDb.

0o Compare Ex4_04 on P.179 with Ex4_06 on P.186
cout will regard ‘pointer to char’ as a string

53

Arrays of Pointers

char* pstr[] = { "Rober Redford",

b

"Hopalong Cassidy",
"Lassie",

"Slim Pickens"”,
"Boris Karloff",
"Oliver Hardy"

54

o Using pointers may eliminate the waste of
memory that occurred with the array version.

= In Ex4_04, the char array occupies 80 * 6 = 480 bytes.
In Ex4_06, the array occupies 103 bytes.

pstr[1] »L|lal[s|s|I|e[\O
pstr(2]
pstr[3] 13 bytes
pstr(4] s{i{i|m| [P|li]c|k|e|n]|s|[©
pstr[5]
Pointer array 24 bytes 14 bytes

s Blo[r[i]s] [Klalr[i|o]f]f\O

13 bytes

so|1|i|v|e|lr| [H|a|r|d|y[|©

Total Memory Is 103 bytes 55

Flgure 4-7

0 One problem of Ex4_07 is that, the
number of strings (6) is “hardwired” in the
code.

o If you add a string to the list, you have to
modify the code to and change it to be 7.

0 Can we make the program automatically
adapt to however many strings there are?

56

o The sizeof operator gives the number of bytes occupied by
its operand
It produces an integer value of type si ze t.

si ze t is a type defined by the standard library and is usually
the same as unsi gned int.

o Consider Ex4 07

cout << sizeof dice;
This statement outputs the value 4, because i nt occupies 4 bytes.
cout << sizeof(int);

You may also apply the si zeof operator to a type name rather
than a variable

cout << sizeof pstr;

This statement outpus the value 24, the size of the whole pointer
array.

o Ex4_08.cpp can automatically adapt to an arbitrary number
of string values.

57

o Array names can behave like pointers.

If you use the name of a one-dimensional array by itself,
it is automatically converted to a pointer to the first
element of the array

o If we have
doubl e* pdat a;
doubl e dat a[5] ;

O you can write this assignment
pdata = dat a;

Initialize pointer with the array address
pdata = &data[1];
pdata contains the address of the second element

58

0 You can perform addition and subtraction
with pointers.

0O Suppose pdata = &dat a[2] ;

The expression pdat a+1 would refer to the
address of data[3];
pdata += 1;

Increment pdat a to the next element

The value of pdat a will actually increase by
sizeof(double) instead of only 1.

pdat a++;

59

De-reference a Pointer with Arithmetic

0 Assume pdat a is pointing to dat a[2],

= *(pdata + 1) =*(pdata+2); . *(d i) == datali
is equivalent to ips: *(data + i) == datali]

= data[3] = data[4];
double data[5];

data[0] data[1] data[2] data[3] data[4)
N T T T T T T T T T T T T T T T O
v y A A
g 3
Each element
occuples 8 bytes Address
pdata+1 pdata+2

\J
pdata = &data[2];
Figure 4-8

(P.195)

60

0 Read Ex4_09.cpp and try to draw the
flowchart manually. Re-write it by
accessing the elements by array indices
instead of pointers.

o Modify Ex4 _08.cpp to test the sizeof()
function. Try to measure the size of a

string array, an integer array, and so on.

61

Postpone until Chapter 7

0 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time
int n = 0;
cout << "l nput the size of the vector - ";

error C2057: expected constant expression

62

0 To hold a string entered by the user, there
IS no way you can know in advance how
large this string could be.

0 Free Store - When your program is
executed, there is unused memory in your
computer.

0 You can dynamically allocate space within
the free store for a new variable.

63

0 Request memory for a double variable,
and return the address of the space
doubl e* pval ue = NULL,;

pval ue = new doubl e;

o Initialize a variable created by new
pval ue = new doubl e(9999. 0);

0 Use this pointer to reference the variable
(indirection operator)
*pval ue = 1234. 0;

64

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.

del et e pval ue;

Release memory pointed to by pvalue
pval ue = 0;

Reset the pointer to O

0 After you release the space, the memory
can be used to store a different variable
later.

65

Allocating Memory Dynamically for Arrays

o0 Allocate a string of twenty characters
= char* pstr;
= pstr = new char| 20];
m=delete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

wmpstr = 0;
Set pointer to null

66

o Allocate memory for a 3x4 array
doubl e (*pbeans)|[4];
pbeans = new double [3][4];

o Allocate memory for a 5x10x10 array
doubl e (*pBigArray)[10][10];
pBi gArray = new double [5][10][10];

0 You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.

delete [] pBigArray;

67

