
塞下曲

月黑雁飛高，

單于夜遁逃；

欲將輕騎逐，

大雪滿弓刀。

～盧綸

46

Indirect Data Access with Pointers

� Each memory location
which you use to store a
data value has an address.

� A pointer is a variable that
stores an address of
another variable (of a
particular type).

� e.g., the variable pnumber
is a pointer

� It contains the address of
a variable of type int

� We say pnumber is of type
‘pointer to int ’.

.

.

.

.

.

.

3000
3004
3008
300C

1
2
3
4

.

.

.

.

.

.

pnumber=0x3000

a=1;
b=2;
c=3;
d=4;

47

Declaring Pointers

� To declare a pointer of type int, you may use
either of the following statements:
� int* pnumber;

� int *pnumber;

� You can mix declarations of ordinary variables
and pointers in the same statement:
� int* pnumber, number = 99;

� int *pnumber, number = 99;

� Note that number is of type int instead of pointer to int .

� It is a common convention in C++ to use variable
names beginning with p to denote pointers.

48

The Address-Of Operator

� How do you obtain the address of a
variable?
� pnumber = &number;

� Store address of number in pnumber

(P.182)

49

Initializing Pointers

� int number(0);
� int* pnumber(&number);

� int* pnumber = NULL;
� int* pnumber = 0;

� No object can be allocated the address 0, so address 0
indicates that the pointer has no target.

� Visual C++ suggests you to use nullptr , but this is not
supported by g++, so I don’t recommend.

� You could test the pointer
� if (pnumber == NULL)

cout << endl << "pnumber is null. ";
� if (!pnumber)

cout << endl << "pnumber is null. ";

50

The Indirection Operator

� Use the indirection operator *, with a
pointer to access the contents of the
variable that it points to.

� Also called the “de-reference operator”

� Ex4_05.cpp on P.184

� *pnumber += 11;

� number1 += 11;

� number1 = number1 + 11;

51

Why Use Pointers? (P.183)

� Use pointer notation to operate on data
stored in an array

� Enable access within a function to arrays,
that are defined outside the function

� Allocate space for variables dynamically.

52

Pointers to char
� char* proverb = “A stitch in time saves nine.”;

� This looks similar to a char array.
� char proverb[] = “A stitch in time saves nine.”;

� It creates a string literal (an array of type const
char)
� with the character string appearing between the quotes,
and terminated with \0

� It also stores the address of the literal in the
pointer proverb .

� Compare Ex4_04 on P.179 with Ex4_06 on P.186
� cout will regard ‘pointer to char’ as a string

53

Arrays of Pointers

char* pstr[] = { "Rober Redford",

"Hopalong Cassidy",

"Lassie",

"Slim Pickens",

"Boris Karloff",

"Oliver Hardy"

};

54

� Using pointers may eliminate the waste of
memory that occurred with the array version.
� In Ex4_04, the char array occupies 80 * 6 = 480 bytes.
In Ex4_06, the array occupies 103 bytes.

55

The sizeof Operator (1)

� One problem of Ex4_07 is that, the
number of strings (6) is “hardwired” in the

code.

� If you add a string to the list, you have to
modify the code to and change it to be 7.

� Can we make the program automatically
adapt to however many strings there are?

56

The sizeof Operator (2)
� The sizeof operator gives the number of bytes occupied by
its operand
� It produces an integer value of type size_t .
� size_t is a type defined by the standard library and is usually
the same as unsigned int .

� Consider Ex4_07
� cout << sizeof dice;

� This statement outputs the value 4, because int occupies 4 bytes.

� cout << sizeof(int);
� You may also apply the sizeof operator to a type name rather
than a variable

� cout << sizeof pstr;
� This statement outpus the value 24, the size of the whole pointer
array.

� Ex4_08.cpp can automatically adapt to an arbitrary number
of string values.

57

Pointers and Arrays

� Array names can behave like pointers.

� If you use the name of a one-dimensional array by itself,
it is automatically converted to a pointer to the first
element of the array

� If we have
� double* pdata;

� double data[5];

� you can write this assignment
� pdata = data;

� Initialize pointer with the array address

� pdata = &data[1];

� pdata contains the address of the second element

58

Pointer Arithmetic

� You can perform addition and subtraction
with pointers.

� Suppose pdata = &data[2];
� The expression pdata+1 would refer to the

address of data[3];

� pdata += 1;
� Increment pdata to the next element

� The value of pdata will actually increase by

sizeof(double) instead of only 1.

� pdata++;

59

De-reference a Pointer with Arithmetic
� Assume pdata is pointing to data[2] ,

� *(pdata + 1) = *(pdata + 2);
is equivalent to
� data[3] = data[4];

(P.195)

Exercises

� Read Ex4_09.cpp and try to draw the
flowchart manually. Re-write it by
accessing the elements by array indices
instead of pointers.

� Modify Ex4_08.cpp to test the sizeof()
function. Try to measure the size of a
string array, an integer array, and so on.

60

