A} A

H ENERE
BT EE
A RFE B 2
REBEw—)]

Indirect Data Access with Pointers

o Each memory location
which you use to store a
data value has an address.

o A pointer is a variable that
stores an address of
another variable (of a
particular type).

= e.g., the variable pnunber
IS a pointer

m It contains the address of
a variable of type int

= We say pnunber is of type
‘pointer to int ’

3000
3004
3008
300C

NYUNNEEE

o 0O T QD
oI

rONMR

pnumber=0x3000

46

Declaring Pointers

o To declare a pointer of type int, you may use
either of the following statements:
= int* pnumber;
= int *pnumber;

o You can mix declarations of ordinary variables
and pointers in the same statement:
= int* pnumber, number = 99;
= int *pnumber, number = 99;
Note that number is of type int instead of pointer to int

o It is a common convention in C++ to use variable
names beginning with p to denote pointers.

47

The Address-Of Operator

o How do you obtain the address of a
variable?

= pnumber = &number;
o Store address of number in pnumber

&number =

Address: 1008

\
pnumber number

pnumber = &number;
Figure 4-5 (p.182)

Initializing Pointers

O int number(0);
O int* pnumber(&number);

O Int* pnumber = NULL,;
O Int* pnumber = 0;
= No object can be allocated the address 0, so address O
indicates that the pointer has no target.
= Visual C++ suggests you to use nullptr , but this is not
supported by g++, so I dont recommend.
O You could test the pointer
= if (pnumber == NULL)
cout << endl << "pnumber is null.
= if (lpnumber)
cout <<endl << "pnumber is null.

49

The Indirection Operator

0 Use the indirection operator *, with a
pointer to access the contents of the
variable that it points to.
= Also called the “de-reference operator”

0 Ex4_05.cpp on P.184
= *pnumber += 11;
= humberl += 11;
= numberl = numberl + 11;

50

Why Use Pointers? (2.183)

0 Use pointer notation to operate on data
stored in an array

0 Enable access within a function to arrays,
that are defined outside the function

O Allocate space for variables dynamically.

51

Pointers to char

= char* proverb = “A stitch in time saves nine.”;

o This looks similar to a char array.
= char proverb[] = “A stitch in time saves nine.”;

o It creates a string literal (an array of type const
char)

= with the character string appearing between the quotes,
and terminated with \0

o It also stores the address of the literal in the
pointer proverb

o Compare Ex4_04 on P.179 with Ex4_06 on P.186

= cout will regard ‘pointer to char’ as a string

52

Arrays ot Pointers

char* pstr[] = { "Rober Redford",

b

"Hopalong Cassidy",
"Lassie",

"Slim Pickens"”,
"Boris Karloff",
"Oliver Hardy"

53

o Using pointers may eliminate the waste of
memory that occurred with the array version.

= In Ex4_04, the char array occupies 80 * 6 = 480 bytes.
In Ex4_06, the array occupies 103 bytes.

pstr[i] > L al|s|s | e \0
pstr(2]
pstr(3] 13 bytes
pstr(4] s{i{i|m| [P|li]c|k|e|n]|s|[©
pstr[5]
Pointer array 24 bytes 14 bytes

» Blo|r|l]|s Klal|r|l]|o|fT|[fT]\O

13 bytes

>»o|1[i|v]e|r| |H|a|r|d|y|[©

Total Memory Is 103 bytes 54

Flgure 4-7

The sizeot Operator (1)

o One problem of Ex4_07 is that, the
number of strings (6) is “hardwired” in the

code.

o If you add a string to the list, you have to
modify the code to and change it to be 7.

o Can we make the program automatically
adapt to however many strings there are?

55

The sizeot Operator (2)

o The sizeof operator gives the number of bytes occupied by
its operand
= It produces an integer value of type size t

m size t is a type defined by the standard library and is usually
the same as unsigned int

o Consider Ex4 07

m cout << sizeof dice;
This statement outputs the value 4, because int occupies 4 bytes.
m cout << sizeof(int);

You may also apply the sizeof operator to a type name rather
than a variable

® Ccout << sizeof pstr;

This statement outpus the value 24, the size of the whole pointer
array.

o Ex4_08.cpp can automatically adapt to an arbitrary number
of string values.

56

Pointers and Arrays

o Array names can behave like pointers.

= If you use the name of a one-dimensional array by itself,
it is automatically converted to a pointer to the first
element of the array

o If we have

= double* pdata;
= double data[5];

O you can write this assignment
= pdata = data;
Initialize pointer with the array address
= pdata = &data[1];
pdata contains the address of the second element

57

Pointer Arithmetic

O You can perform addition and subtraction
with pointers.

O Suppose pdata = &data[2];

= The expression pdata+1l would refer to the
address of data[3];
= pdata +=1,;
Increment pdata to the next element

The value of pdata will actually increase by
sizeof(double) instead of only 1.

= pdata++;

58

De-refterence a Pointer with Arithmetic

O Assume pdata is pointing to data[2] |,
= *(pdata + 1) =*(pdata + 2);
is equivalent to
= data[3] = data[4];

double data[5];

data[0] data[1] data[2] data[3] data[4]
I T T T T T T T T T A T I O O
\)y \ A
v
Each element
occupies 8 bytes Address
pdata+1 pdata+2
Y

Figure 4-8
(P.195)

pdata = &data[2];

59

Exercises

0 Read Ex4_09.cpp and try to draw the
flowchart manually. Re-write it by
accessing the elements by array indices
instead of pointers.

o Modify Ex4 _08.cpp to test the sizeof()
function. Try to measure the size of a

string array, an integer array, and so on.

60

