A &
YR E R o
178 -F3 5 -
R A FEBAE °

OBJECTIVES

After reading this chapter, the reader should

be able to :

. Convert a number from decimal to binary notation
and vice versa.

. Understand the different representations of an integer
inside a computer: unsigned, sign-and-magnitude,

one's comp

J Understand
exponential

lement, and two’s complement.

| the Excess system that 1s used to store the
| part of a floating-point number.

J Understanc

| how floating numbers are stored inside a

computer using the exponent and the mantissa.

Number
Representation

Bit & Byte

 Human are familiar with decimal digits.
— 925, 16, 49

« Computers represent data in binary digit (bit, {17 7T).
— 0101 1110

 Bits are a very small unit. For convenience, 8 bits are
grouped as 1 byte (i 7tZH), which are the basic
memory unit in computers.
— File Size: 30MBytes
— Memory Size: 1GBytes
— Hard Disk Size: 2TBytes

DECIMAL
ZW),
BINARY

Decimal system

The decimal system has 10 digits and 1s based on powers of 10

10* 103 102 10! 100
10,000 1000 100 10 |
Decimal Positions

243

N

| 2100 + 4%10 + 3+l

'

Two Hundred Forty-Three

B inary system

The binary system, used by computers to store numbers, has 2
digits, 0 and 1, and 1s based on powers of 2.

27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1
Binary Positions
11110011

NS

1*128 + 1«64 + 1%32 + 116 + 0x8 + 0x4 + 1¥2 + 1=1

Two Hundred Forty-Three

CONVERSION

B inary to decimal conversion

0 1 0O 1 1 0 1 binary number
64 32 16 8 4 2 1 position values
0+32+ 0+8+4+0+1 results

A

v

45 decimal number

Convert the binary number 10011 to decimal.

Write out the bits and their weights. Multiply the bit by
its corresponding weight and record the result. At the end,
add the results to get the decimal number.

Binary 1 0 0 1 1
Weights 16 8 = 2 1

16 +0 + 0 + 2 + 1
Decimal 19

D ecimal to binary conversion

Stop when the
quotient is O

Convert the decimal number 35 to binary.

Write out the number at the right corner. Divide t
number continuously by 2 and write the quotient and tl
remainder. The quotients move to the left, and fl

1C
1C
1C

remainder 1s recorded under each quotient. Stop when tl
quotient 1s zero.

0 €1 €2 €4 €8 €17 € 35 Dec.
Binary 1 0 0 0 1 1

1C

INTEGER

REPRESENTATION

Range of integers

— o0 i + o0
0
J An integer can be positive or negative

1 To use computer memory more efficiently, Integers
can be represented as unsigned or signed numbers

1 There are three major methods of signed number
representation:

JSign-and-magnitude
1One’s complement

JTwo’s complement

1 axonomy of integers

Integer
Representation

Unsigned I Signed I
Sign-and- One's Two's
Magnitude Complement Complement

8 =00001000 -8 10001000 11110111 11111000

U nsigned integer

JUnsigned integer range: 0 ... (2N-1)

of Bits

JStoring unsigned integers process:

1. The number i1s changed to binary

2. If the number of bits 1s less than N, Os are added to the
left of the binary number so that there 1s a total of N
bits

w0

Store 7 1n an 8-bit memory location.

First change the number to binary 111. Add five

Os to make a total of N (8) bits, 00000111. The
number is stored in the memory location.

B

Store 258 1n a 16-bit memory location.

First change the number to binary 100000010.
Add seven Os to make a total of N (16) bits,

0000000100000010. The number is stored in the
memory location.

Example of storing unsigned integers in

two different computers

8-bit allocation 16-bit allocation
00000111 0000000000000111
11101010 0000000011101010
overflow 0000000100000010
overflow 0110000010111000
1,245,678 overflow overflow

J Unsigned numbers are commonly used for counting
and addressing

oS

Interpret 00101011 1n decimal 1f the number
was stored as an unsigned integer.

32+8+2+1, the answer is 43.

number. If it is 0, the number is
positive If it is 1, the number is negative.

S ign-and-magnitude integers

JRange: -2N-1-1) ... +(2N-1-1)

of Bits Range
—127 -0 +0 +127
—32767 -0 +0 +327677

-2,147,483,647 -0 +0 +2,147,483,6477

IStoring sign-and-magnitude integers process:

1.
2.

The number 1s changed to binary; the sign is ignored

If the number of bits 1s less than N-1, Os are add to the left
of the binary number so that there is a total of N-1 bits

If the number is positive, 0 1s added to the left (to make 1t
N bits). If the number is negative, 1 1s added to the left

L

Store +7 1n an 8-bit memory location using
sign-and-magnitude representation.

First change the number to binary 111. Add four

Os to make a total of N-1 (7) bits, 0000111. Add
an extra zero because the number is positive.
The result is:

00000111

L

Store —258 1n a 16-bit memory location
using sign-and-magnitude representation.

First change the number to binary 100000010.
Add six Os to make a total of N-1 (15) bits,

000000100000010. Add an extra 1 because the
number is negative. The result is:

1000000100000010

Example of storing sign-and-magnitude
integers in two computers

8-bit allocation 16-bit allocation
00000111 0000000000000111
11111100 1000000001111100
overflow 0000000100000010

overflow 1110000010111000

L

Interpret 10111011 1n decimal 1f the number
was stored as a sign-and-magnitude integer.

Ignoring the leftmost bit, the remaining bits are

0111011. This number in decimal is 59. The
leftmost bit is 1, so the number is —359.

Note: i—
—

n an &-bit allocation:

+0 = 00000000
-0 = 10000000

But you cannot add a positive number and negative number:

00000110 =6
10000101 =-5
1000 1011 =-11

One s complement integers

JRange: -2N-1-1) ... +(2N-1-1)

of Bits

IStoring one’s complement integers process:

1.
2.

The number 1s changed to binary; the sign is ignored

Os are added to the left of the number to make a total of N
bits

. If the sign 1s positive, no more action is needed. If the

sign 1S negative, every bit 1s complemented.

L/ 7 /)/ LA\ W L

If it is 0, the number is positive.If it is 1, the
number is negative.

L

Store +7 1n an 8-bit memory location using
one’s complement representation.

First change the number to binary 111. Add five
Os to make a total of N (8) bits, 00000111. The
Sign is positive, so no more action is needed. The
result is:

00000111

L

Store —258 1n a 16-bit memory location
using one’s complement representation.

First change the number to binary 100000010.
Add seven Os to make a total of N (16) bits,

0000000100000010. The sign is negative, so
each bit is complemented. The result is:

1111111011111101

Example of storing one’s complement integers in

two different computers

Decimal 8-bit allocation 16-bit allocation
00000111 0000000000000111
11111000 [111111111111000
01111100 0000000001111100
10000011 [111111110000011

+24.,760 overflow 0110000010111000

—-24.760 overflow 1001111101000111

w0

Interpret 11110110 1n decimal 1f the number
was stored as a one’s complement integer.

The leftmost bit is 1, so the number is negative.
First complement it. The resultis 00001001.
The complement in decimal is 9. So the original
number was —9. Note that complement of a
complement is the original number.

_L%\ Note:

One’s complement means reversing all bits. If
you one’s complement a positive number, you
get the corresponding negative number. If you
one’s complement a negative number, you get
the corresponding positive number. If you
one’s complement a number twice, you get the
original number.

00001111, = 15
11110000, = -15
00001111, = 15

Note: %
—_

n an o-oIt adiiocation.

+0 = 00000000
-0=>» 11111111

DUl not aitways.

0000 1000=38
1111 1000 =-7
0000 0000 =0

T Wwo'’s comglement integers

JRange: -(2N1) ... +(2N-1-1)

of Bits Range
—128 0 +127
—32,768 0 +32,767
—2,1477,483,648 0 +2,147,483,647

IStoring two’s complement integers process:

1. The number is changed to binary; the sign 1s 1ignored

2. If the number of bits 1s less than N, Os are added to the left
of the number so that there 1s a total of N bits.

3. If the sign 1s positive, no further action 1s needed. If the
sign 1s negative, leave all the rightmost Os and the first 1
unchanged. Complement the rest of the bits.

L

Store +7 1n an 8-bit memory location using
two’s complement representation.

First change the number to binary 111. Add five
Os to make a total of N (8) bits, 00000111.The
Sign is positive, so no more action is needed. The
result is:

00000111

tore —40 1 a 16-bit memory location using two's
complement representation.

First change the number to binary 101000. Add
ten Os to make a total of N (16) bits,
0000000000101000. The sign is negative, so
leave the rightmost Os up to the first 1 (including
the 1) unchanged and complement the rest. The
result is:

111111111101

l . &%) 4 , @ J 8« e Q. 78 2 29 LN & &

If it is 0, the number is positive.
If it is 1, the number is negative.

most important, and the most widely usea
representation of integers today.

Example of storing two’s complement integers in

two different computers

Decimal §8-bit allocation 16-bit allocation
00000111 0000000000000111
11111001 IT11111111111001
O1111100 0000000001111100
10000100 I111111110000100
overflow 0110000010111000
overflow 1001111101001000
Range
—128 0 +127
—32.,768 0 +32,767

—2,1477,483,643 0 +2,147,483 647

00001000 =8
1111 1001 =-7
0000 0001 =1

® e

0 = 00000000

w0

Interpret 11110110 1n decimal 1f the number
was stored as a two’s complement integer.

The leftmost bit is 1. The number is negative.
Leave 10 at the right alone and complement the
rest. The resultis 00001010. The two’s
complement number is 10. So the original
number was —10.

B

Two’s complement can be achieved by
reversing all bits except the rightmost bits up to
the first 1 (inclusive). If you two’s complement

a positive number, you get the corresponding

negative number. If you two’s complement a
negative number, you get the corresponding
positive number. If you two’s complement a

number twice, you get the original number.

S ummary of integer representation

Contents of Unsigned Sign-and- One’s Two’s
Magnitude Complement Complement
0 +0 +0 +0
1 +1 +1 +1
2 +2 +2 +2
3 +3 +3 +3
4 +4 +4 +4
S +5 +5 +5
6 +6 +6 +6
7 +7 +7 +7
8 -0 -7 -3
9 | —6 -7
10 -2 -5 —6
11 -3 —4 -5
12 —4 -3 —4
13 =5 -2 -3
14 —6 -1 -2

EXCESS
SYSTEM

—EX£€SS.SJZS€ZH—

JAnother representation that allows you to store
both positive and negative numbers 1n a
computer 1s call the Excess system

JA positive number, called the magic number, is
used 1n the conversion process

1The magic number is normally (2N-1) or (2N-1-1),
where N 1s the bit allocation

1To represent a number in Excess,
JAdd the magic number to the integer

1Change the result to binary and add Os so that there
1s a total of N bits

L

Represent —25 1n Excess 127 using an 8-bit
allocation.

First add 127 to get 102. This number in
binary is 1100110. Add one bit to make it 8

bits in length. The representation is
01100110.

L

Interpret 11111110 1f the representation 1s
Excess 127.

First change the number to decimal. It
is 254. Then subtract 127 from the
number. The result is decimal

FLOATING-POINT

REPRESENTATION

C hanging fractions to binary

JA floating-point number is an integer and a fraction.
Conversion floating-point number to binary
JConvert the integer part to binary
(Convert the fraction to binary

JPut a decimal point between the two parts

Stop when the
resultisO

OS] (0250)—wm 0500 — 10000000

Converting the fraction part

Binary

Transform the fraction 0.875 to binary

Write the fraction at the left corner. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. Stop when the
number is 0.

0875 = 1.750 => 1.5 = 1.0 => 0.0
0 . 1 1 1

Transform the fraction 0.4 to a binary of 6 bits.

Write the fraction at the left cornet. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. You can never
get the exact binary representation. Stop when
you have 6 bits.

04 => 08=>16 =212 =04 => 08 =>1.6
0O . 0 1 1 0 0 1

N ormalization

JA fraction is normalized so that operations are
simpler

INormalization: the moving of the decimal point so
that there 1s only one 1 to the left of the decimal
point.

+1010001.1101 20 x +1.01000111001

—111.000011
- +0.00000111001
—0.001110011

22 x —1.11000011
276 x +1.11001
273 x —1.110011

I EEE standards

l Excess 127 I

. 8 23

Sign Exponent Mantissa

a. Single Precision

} Excess 1023 I

. 11 52

Sign Exponent Mantissa

b. Double Precision

L

Show the representation of the normalized
number +2° x 1.01000111001

The sign is positive. The Excess 127 representation of
the exponent is 133. You add extra Os on the right to
make it 23 bits. The number in memory is stored as:

0 10000101 01000111001000000000000

L

Interpret the following 32-bit floating-point
number

1 01111100 11001100000000000000000

The sign is negative. The exponent is —3 (124 —

127). The number after normalization is

-2 x 1.110011

L

Represent 81.5625 in IEEE standard

81,,=01010001,; 0.5625=0.1001,
1010001.1001 =+ 2°x 1.0100011001

Exponent 6 is expressed in Excess 127 as 133 =
10000101,

0 10000101 01000110010000000000000

Examgle of floating-point representation

Number Sign Exponent Mantissa

-22 x 1.11000011 1 10000001 11000011000000000000000
+26 x 1.11001 0 01111001 11001000000000000000000
273 x 1.110011 1 01111100 11001100000000000000000

