Chapter 2

Data, Variables, and

Calculations

The Structure of a C++ Program

int main()

{

input();

process();

output();

return O;

» | int input()

{
/] ...

return;

The Structure of a C++ Program

int main()
{
input(); » int process()
{
process(); /] ..
< return;
output(); ¥
return O;
b

The Structure of a C++ Program

int main()

{

input();

process();

output();

return O;

» int output()

{
/] ...

return;

¥

main()

o Every ANSI/ISO standard C++ program contains
the function main().

o A Program in C++ consists of one or more
functions.

o A function is simple a self-contained block of code
with a unique name.
= You can invoke a function by its name.

o The principal advantage of having a program
broken up into functions is that you can write and
test each piece separately.
= Re-use

Ex2 01

Solution Explorer - Exz_ 01

o Start a new Win32 |3
1 '; Solukion 'Ex2_01' {1 project)
Console I?rOJect -
m Ctrl+Shift+N 5:&3‘13" F";ﬁ
= Choose Empty project - [Source Fles

= Right-click Source Files
and Add > New Item

o Choose category Code
and template C++ file

(.cpp).

Add New Item
AddnewIem-Erz 01 2

Cakegories: Templaktes;
=1 Misual C++ Yisual studio installed templates
Ul
..... Cade (4] C++ File {.cpp} |h] Header File {.h}
- Daka c.é]rﬂidl File {.idl} %]Mu:ndule-DeFinitin:nn File [.def)
-~ Resource 2] Component Class cit] Installer Class
o Lkiliky My Templates

- Property Sheets :
L] 5earch Online Templates. ..

'Ig::realzesa file conkaining C++ source code

[ame: [Exz_o1

Locatior: ||:|:'I,CS1IZI1'l,Exercises'l,ExE_Dl'l,ExE_Dl Browse. ..

Add Cancel

Syntax of C Language

// Ex2_01.cpp
// Simple calculation
#include <iostream>

using std::cout;
using std::endl;

int main()
Ciions e
inta, b, c;
a = 10;
b = 20;
c=a+b;

cout << "The summationa + b =",
cout << ¢;
cout << endl;

-

<F7> to Build

U Ex2_01 - Microsoft Yisual Studio

File Edit Wiew Projeck Build Debug

Tools

[l Solution 'Ex2_01' (1 project)
= 154 Ex2_01

3 Header Files

3 Resource Files

=% source Files

'-'-*_*] Exz_01.cpp

|L'i'§5cilutinn Explorer |L~%f:lass Yiew | FH|Resource View

Ckpuk

Show output From: Build

- | @ |

& B | =|=

window Community Help
Sl - - e | % a9 - - BB | bk Debug - Win3z - | 3%
> EHZ_Dl.cpp]-.'Start Fage | -
I(Global Scope) LI I LI
1577 Ex2.01 cpp
Z2| A Bimple calcoulation =
3; #include =iostreams
43
5?;:_ uzing std:cout;
£ using std:zendl;
Tk
Simint main()
ad §
10% int a, b, o
115
123 a = 10;
124 b = 20:
14§ [S v ol v
152
168 cout == "The summation a + b = "
173 cout == o}
184 cout == endl;
19
208 1
215{
22
A »

- 0

Embedding manifest..

Build log was saved 6-.1:- "File-SSd 08100 “ExerciseshEx2 O1%Ex2 01 4Debuz Buildlos him"

Ex2 01 - O erroris), O warning(s)

nli B

=== Build: 1 =succeeded, 0 failed, 0 up-to-date, 0 skipped s===s======

[4 Code Definition Window | 2= Call Browser | [=] Cutput |

Build succeeded

Cal 1

Chi

Al

Jaindig Jaaias

Ixaq|ou i ;\,q

Naming Variables

0 Variable names can include the letters A-Z,
a-z, the digits 0-9, and the underscore
character ().

= Variable names cannot begin with digits.

= Avoid naming a variable name to begin with an
underscore (_this, _that), because it may
conflict with standard system variables.

O Variable names are case-sensitive.

o Convention in C++
= Classes names begin with a capital letter.
= Variable names begin with a lowercase letter.

10

Naming Variables (2)

o In Visual C++ 2005, variable names can
be up to 2048 characters long.

= humber_of students
= strips_per_roll

o0 However, not all compilers support such
long names.

= It's a good idea to limit names to a maximum
of 31 characters.

o Illegal variable names:
= 8 Ball, 7UP
= Hash!, Mary-Ann

11

Declaring Variables

o1 nt val ue;

» This declares a variable with the name val ue
that can store integers.

gint 1, J, Kk;
= A single declaration can specify the names of
several variables.

= However, it is better to declare each variable
in a single line. (Why?)

oint value = 10;
= When you declare a variable, you can also
assign an initial value to it.

12

Integer Types & Character Types

O Integer Types

= int // 4 bytes
= short // 2 bytes
= long // 4 bytes,

the same as int in Visual C++ 2005

0 Character Data Types

= char letter = ‘A’; // 1 byte
Single quote, not double quote (“)

The ASCII code of the character is stored in that byte.
Therefore, it is equivalent to char letter = 65;

13

Integer Type Moditier

0 Examples:
= sighed int; // equivalent to int
= signed short; // equivalent to short

Range: -32768 ~ 32767

= unsigned short;
Range: 0 ~ 65535

= signed char;
Range: -128 ~ 127

= unsigned char;
Range: 0 ~ 255

14

Boolean Type

o0 Examples:
m bool testResult:;
m bool colorlsRed = true;

o In old C language, there is no bool data

type.
= Variables of type i nt were used to represent
logical values.
Zero for false; non-zero for true.
Symbols TRUE and FALSE are defined for this purpose.
Note that TRUE and FALSE are not C++ keywords.
Don’t confuse t r ue with TRUE.

15

Floating-Point Type

o A floating-point constant contains a decimal point,
or an exponent, or both.
m 112.5
= 1.125E2 (1.125x10%)

o Examples:

= double inch_to_cm = 2.54;
8 bytes

Ref. Chapter 3 of Forouzan:
= 1 bit sign
= 11 bit exponent
= 52 bit mantissa

= float pi = 3.14159f;
4 bytes

16

Enumeration

o Declare an enumeration type Wek, and
the variable t hi s\Week;
= enum Week {Sun, Mon, Tue, Wed, Thu, Fri,
Sat} thi s\Wek;

0 You may then assign one enumeration

constant as the value to the variable
t hi sWeek:

mthi sWwek = Thu:

o Actually, the first name in the list, Sun,
will have the value 0, Mon will be 1, and so
on.

17

The const Modifier

oconst float inch to cm= 2. 54;

= If you accidentally wrote an incorrect
statement which altered the value of
I nch_to_cm the compiler will fail and complain.

= Avoid using magic numbers like 2.54 in your
program when the meaning is not obvious.
Declare a constant for it.

o All the above data types can have const
modifiers.

0 Constant Expressions
m const float foot to cm= 12 * inch to cm

18

Basic Input/Output Operations

o Input from the keyboard

mcin >> nunl >> nun®;

o Output to the command Line
m cout << nunl << nun?®;

mcout << nunl << ' ° << nung;
mcout << setw(6) << nunml << setw(6) <<
nunt;

#i ncl ude <i omani p>

Causes the next output value to have width of 6
spaces.

19

Escape Sequences

O An escape sequence starts with a backslash
character, \.
m cout << endl << “This is a book.”;

m cout << endl << “\tThis is a book.”;
o Some useful escape sequences:

» \a alert with a beep
= \n newline

= \b backspace

m \t tab

=\ single quote
m\ double quote

=\ backslash

20

Assignment Statement

O variable = expression ;
mC =a + b;
mq=271/ 4, |/ the quotient is an integer
mr =27 %4; [/ renmainder

0 Repeated assignment

ma=»bh =2

o Modifying a variable
md=a+ Db/ c [/ d =a+ (b / c)
m count = count + 5;
= count += b5; [/ shorthand notation
= count *= b; [/ count = count * 5
mal/=Db + c /Il a=al (b + c)

21

Increment Operators

o Frequently used in C++

o The following statements have exactly the same
effect:
m count = count + 1;
= count +=1; /] short hand
= ++count; [/ unary operator

O Prefix form: increment before the value is used.
m int total, count = 1;

m total = ++count + 6; [/ count=2; total = 8
o Postfix form: increment after the value is used.
m total = count++ + 6; [/ total = 7; count=2

m total = 6 + count ++;

22

Decrement Operators

0 Unary operator to decrease the integer

variable by 1.
mtotal = --count + 6;
mtotal = 6 + count--;

o Both increment and decrement operators
are useful in loops, as we shall see in
Chapter 3.

23

Comma Operatot

O Specify several expressions in an assignment
= int nunt;
= i nt nung;
= int nunS;
= I nt numi;
= numd = (nunl=10, nun=20, nunB8=30);

o Operator Precedence (see P.77)

o It is a good idea to insert parentheses to make
sure.

24

Casting

o The conversion of a value from one type to another

= Implicit cast
I nt n;
float a = 7
float b = 2.
float ¢ = a
n = c;
= The floating-point value will be rounded down to the nearest integer (3)
= The compiler will issue a warning.
= Explicit cast
n = static _cast<int> (¢);
= The compiler assumes you know what you are doing and will not issue
a warning.

= Old-style cast (not recommended)
n = (int) c ;

25

Bitwise Operatots

0 The bitwise operators are useful in
programming hardware devices.

= Review Chapter 4 of Forouzan.

& AND

| OR

A exclusive OR
~ NOT

>> shift right
<< shift left

O You may pack a set of on-off flags into a
single variable.

26

Examples ot Bitwise Operators

0 Bitwise AND
mchar letter = 0x41;
m char nmask = OxOF;

mletter = letter & nask;
O Bitwise Shift Operators
mchar j = 2;// 0000 0010

mj <<= 1; // 0000 0100
=j >>=2; // 0000 0001
=J =-104; // 1001 1000
mJ >>=2; [/ 1110 0110 (

?)

Storage Duration and Scope

O Duration
= Automatic storage duration
= Static storage duration
= Dynamic storage duration (Chapter 4)

O Scope

= The part of your program over which the
variable name is valid.

28

Automatic Variables

o Automatic variables have local scope
(block scope).

= Every time the block of statements containing
a declaration for an automatic variable is
executed, the variable is created anew.

= If you specified an initial value for the
automatic variable, it will be reinitialized each
time it is created.

= When an automatic variable dies, its memory
on the stack will be freed for used by other
automatic variables.

29

Ex2_07.cpp in P.89

o From the viewpoint of the outer block, the inner
block just behaves like a single statement.

o The inner block also declares a variable named
count 1, so the variable count 1 declared in the
outer block becomes hidden now.

o Other variables (count 3) declared at the
beginning of the outer scope are accessible from
within the inner scope.

o After the brace ending the inner scope, count 2
and the inner count 1 cease to exist.

o Try to uncomment the line
[/ cout << count2 << endl;

to get an error.

30

(Global Variables

0 Variables declared outside of all blocks are called
global variables and have global namespace
scope.

o Global variables have static storage duration
by default. It will exist from the start of
execution of the program, until execution of the
program ends.

= If you do not specify an initial value for a global variable,
it will be initialized with O by default.

= On the contrary, automatic variables will not be
initialized by default.

o Figure 2-12 shows an example that the lifetime
and scope may be different (val ue4).

31

Class View Pane of IDE Window

- &
Ci | = |-
<Search - £1 =
=i _EE test

- =ig Global Functions and Yariables
L= Macros and Constants

- Sy mainivoid)

- opmm

L:'@Si:ulutiu... (% Class View | 58| Resour,

o Do NOT declare all
variables global!

o For a large program,
there are many
variables:

m Accidental erroneous
modification of a
variable

= Difficult to name all the
variables consistently
and uniquely

= Memory occupied for
the duration of program
execution

32

Namespaces

o Namespace is a mechanism to prevent accidental naming clash.

m The libraries supporting the CLR and Windows Forms use namespaces
extensively.

m The ANSI C++ standard library does, too.
o Every non-local variable or function must be qualified.

[l Ex2_09.cpp
#1 ncl ude <i ostreanp

I nt val ue

"enter an integer: ";
"\nYou enterd " << val ue

<< @&t d: endl ;

return O;

33

using Directive

O usi ng nanespace std,

= This imports all the names from the std
namespace

= so that you don’t need to qualifying the name
with prefix st d: : in your program.

= However, this negates the reason for using a
namespace.

= Only introduce the names that you use with

“using declaration”:
usi ng std::cout;
usi ng std::endl;

34

Declaring a Namespace

/'l Ex2_10.cpp
/1 Declaring a nanespace
#i ncl ude <i ostreanr

nanmespace nyStuff

{
I nt value = 0;
}
i nt mai n()
{

std::cout << "enter an integer: ";

std::cin >> nyStuff::val ue;

std::cout << "\nYou entered " << nyStuff
<< std::endl;

return O;

- val ue

35

using Directive

/1 Ex2_11.cpp
/1 using a using directive
#i ncl ude <i ostreanr

nanmespace nyStuff

{
}

Int value = 0;

usi ng nanespace nyStuff;

i nt main()

{

std::cout << "enter an integer: ";

std::cin >> val ue;

std::cout << "\'nYou entered

<< std::endl;
return O;

<< val ue

36

using Declaration

/] Ex2_11a.cpp
/'l using a using declaration
#i ncl ude <i ostreanr

nanmespace nyStuff

{
}

using nmyStuff::value; // only inportant the variables you need

Int value = 0;

i nt mai n()
{
std::cout << "enter an integer: ";
std::cin >> val ue;
std::cout << "\nYou entered
<< std::endl;
return O;

<< val ue

37

CLI Specific

o Fundamental Data Types
= | ong | ong

8bytes
= unsigned | ong | ong
8bytes
| ong i nt only occupis 4
bytes

O Use saf e cast and not
static_cast in your
C++/CLI code.

O Each ANSI fundamental
type name maps to a

value class type in the
Syst emnamespace.

= See P.100
o It is suggested to write
= int count = 10;
= double value = 2.5;
O instead of
m System::Int32 count = 10;

m System::Double
value=2.5;

38

C++/CLI Output to the Command
Line

o Console — a class in the System
namespace

= Write()

= WritelLine
Consol e:: WiteLine(L"\n Orange”);

= Formatting the Output:
Consol e: : WiteLine(L"Sum of {0} and {1} =
{2}%, 1,], 14]);
Consol e:: WiteLine(L"{2} = {0} + {1}", 1,
I +]);

],

39

C++/CLI Input from the Keyboard

oString” line = Consol e:: Readline();
O char ch = Consol e:: Read();
O Consol eKeyl nfo keyPress =

Consol e: : ReadKey(true);

= true — hide the character

= false — display the character

o When you press the button ‘a’ without Caps Lock:
= keyPress. KeyChar = *'a’
= keyPress.Key = A

o When you press the button ‘1’ on the NumPad:
= keyPress. KeyChar = ‘1’
= keyPress. Key = NunPadl

40

