Chapter 4

Arrays, String, and Pointers

O To reference several data elements of a
particular type with a single variable name.

o Individual items in an array are specified
by an index value.
The first having the sequence number 0.

o All the elements of an array are stored in
a contiguous block of memory.

Figure 4-1

Index value Index value
for the 2nd element for the 5th element
AI'FEI}.:’ name — AFFEI}-’ name —,
Y Y Y L
helght[0] helght[1l] helght[2] helght[3] helght[4] helght[5]
73 62 51 42 41 34

Flgure 4-1

The helght array has & elements.

Declaring Arrays

oint height[6];

= Because each i nt value occupies 4 bytes in
memory, the whole array requires 24 bytes.

o doubl e hor sepower [10] ;

= Q: How many bytes will be required for this
array?

oconst 1nt MAX = 20;
Odouble mles [MAX |;

Using Arrays

O

O
O

O

Ex4_01.cpp on P.162

cin >> gas[count];
cin > mles[count];

cout << (mles[i] — mles[i-1])/gas[i];

If you use illegal index values, there are no
warnings produced either by the compiler or at
run-time.

= MAX=20, so index values 0~19 are legal.

m gas[-1] and gas[30] are illegal

o To initialize an array in its declaration, you put
the initializing values separated by commas
between braces

I nt apple = 10;
int miles[5 = {1019, 1650, 2197, 2749, 3273};

o The array elements for which you didn’t provide
an initial value is initialized with zero.
This isn’t the same as supplying no initializing list.

Without an initializing list, the array elements contain
junk values.

0 A convenient way to initialize a whole
array to zero is simply to specify a single
initializing value as 0.

I nt data[100] ={ 0 };

0 You may also omit the dimension of an
array of numeric type:
int value[] ={ 2, 3, 4} ;

The number of elements in the array is
determined automatically.

Character Arrays and Strings

0 An array of type char is called a character
array.
= It is generally used to store a character string.

= A string terminates with a null character,
which is defined by the escape sequence ‘\0'.
It is a byte with all bits as zero.

name[4] String termination
character
L4 v
Each character in a string occupies Alllble]lr]t Eli|n]|s|t]le]i|n]|O
one byte
char name[] = “Albert Einstein”;

Flgure 4-2

String Input

o const int MAX = 20;
o char name [MAX];
o cin.getline(name, MAX, ‘\n’);

The maximum number of characters The character that is 1o stop the
to be read. When the specified input process, You can specify
maximum has been read, input stops. any character here, and the first

occurance of that character will

The name of the array of type S ALl HUCR L e ot

char[] in which the characters
read from c¢in are to be stored.

¥ ¥ ¥
cin.getline{ name , MAX, “\n" };
Figure 4-3

o It is your responsibility to ensure that the
array is large enough for any string you
might subsequently want to store.

Q: Can the array “char name[20]” store the
string “12345678901234567890"?

0 The maximum number of characters read
is MAX-1 (rather than MAX),

to allow for the ‘\0O’ character to be appended.
o The ‘\n’ isn’t stored in the input array nane

10

String Input (3)

0 You may also use cin to input a string, but
please note that the delimiter of cin is
whitespaces.

= Q: If you supply “Albert Einstein”, what will
“cin >> nane” store into the string nane?

0 Ex4_03.cpp on P.168

11

o An array can also have more than one
index value,

in which case it is called a multidimensional
array.

double matri x[3][7];
matri x[2][4] = 10.7

0 Note that a two-dimensional array in
native C++ is essentially a one-
dimensional array of one-dimensional
array.

12

Initializing Multidimensional Arrays

o Initialize a two-dimensional array
=int data [2][4] = {
N { 1,

n {7, 1
N };

0 You can omit initializing values in any row
=int data [2][4] = {
O { 1,

N { 7, 1

N };

21 31 5}1
1, 13, 17}

2, 31,
1}

13

Initializing Multidimensional Arrays (2)

o Initializing a whole array with zeros.
=int data[2][4][6] = { O };

o Storing Multiple Strings (2-dim char array)
m char stars[][80] = { “Robert Redford”,
“Hopal ong Cassi dy”,
“Lassie”,
“SlimPi ckens”,
“Boris Karloff”,
“Aiver Hardy”
¥
o Note that you cannot omit both array dimensions.

The rightmost dimension(s) must always be
defined.

14

Example: Coin Tossing

0 A coin has two sides — Head/Tail
= 0/1

0 Repeat tossing the coin 20 times

o Count the occurrences of Head and Tail,
respectively.

15

Random Number Generator

O rand()

= The function returns a pseudorandom
integer in the range 0 to RAND_MAX (32767)

o // Print 5 random numbers.
ofor(inti=0;i<5;i++)
o cout << rand() << endl;

16

Seed of r and()

o With the same seed, the program will get
the same result at each execution.

0 Use srand() and choose the current time
as the seed.

O #include <time.h>

0o srand((unsigned) time(NULL));
ofor(inti=0;i<5;i++)

o cout << rand() << endl;

17

Recursive Definition

o Fibonacci sequence
= F[0] =0, F[1] =1, F[n] = F[n-1] + F[n-2]
»01123581321345589 144 ...

O Lucas sequence
= L[0] =2, L[1] =1, L[n] = L[n-1] + L[n-2]
2134711182947 76 123 199 ...

0 You may write a program to verify
= L[n] == F[n+2] - F[n-2]

18

Expected Result

Fi bonacci sequence:

0112358 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Lucas sequence:

21347 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349

L[2]= 3 F[4= 3 F[0]= O 3==3-0

L[3]= 4 F[5]= 5 F[1]= 1 4 ==5 - 1

L[4= 7 F[6]= 8 F[2= 1 7 ==8-1

L[5]= 11 F[7]1= 13 F[3]= 2 11 == 13 - 2

L[6]= 18 F[8]= 21 F[4= 3 18 == 21 - 3

L[7]= 29 F[9]= 34 F[5]= 5 29 == 34 - 5

L[8]= 47 F[10] = 55 F[6]= 8 47 == 55 - 8

L[9]= 76 F[11]= 89 F[7]= 13 76 == 89 - 13

L[10] = 123 F[12] = 144 F[8]= 21 123 == 144 - 21
L[11] = 199 F[13] = 233 F[9] = 34 199 == 233 - 34
L[12] = 322 F[14] = 377 F[10] = 55 322 == 377 - 55

L[13] = 521 F[15] = 610 F[11] = 89 521 == 610 - 89

L[14] = 843 F[16] = 987 F[12] =144 843 == 987 - 144
L[15] =1364 F[17] =1597 F[13] =233 1364 == 1597 - 233
L[16] =2207 F[18] =2584 F[14] =377 2207 == 2584 - 377

L[17] =3571 F[19] =4181 F[15] =610 3571 == 4181 - 610

int n = 0;

const int M= 20;
int L[M {2, 1};
int F[M {0, 1};

f or
{

(n=2; n<M n++)

L[n]
F[n]

}

cout << "Fi bonacci
for (n=0; n<M n++)

cout << F[n] <<

cout << endl;

cout << "Lucas sequence:

for (n=0; n<M n++)

cout << L[n] <<

cout << endl <<

for (n=2; n<M 2;

<< L[n]

n++)
cout << "L[" << setwW(2) << n << "]=" << setwW4) << L[n]
<< "F[" << setW(2) << n+2 << "] ="
<< "F[" << setwWm(2) << n-2 << "] ="
<< (L[n]==F[n+2]-F[n-2]?"

<< F[n+2] <<

<< endl ;

L[n-1] + L[n-2];
F[n-1] + F[n-2];

seguence:

<< endl ;

<< endl ;

" << F[n-2]

<<

setw(4) << F[n+2]
setwW(3) << F[n-2]
n : n ! - n)

<< Il\tll

<< Il\tll
<< Il\tll

20

Indirect Data Access

o Each memory location
which you use to store a

data value has an address.

o A pointer is a variable that
stores an address of
another variable (of a
particular type).

= e.qg., the variable pnunber
is a pointer

= It contains the address of
a variable of type i nt

= We say pnunber is of type
‘pointer to i nt".

3000
3004
3008
300C

NUSNNEEE

- pnumber=0x3000

21

o To declare a pointer of type int, you may use
either of the following statements:
| nt* pnunber;
| nt *pnunber;
O You can mix declarations of ordinary variables

and pointers in the same statement:

int* pnumber, number = 99;
Note that number is of type i nt instead of pointer to int.

o It is a common convention in C++ to use variable
names beginning with p to denote pointers.

22

Initializing Pointers

0 int number = 0;
O int* pnumber = &number;

o int™ pnumber = NULL;
O int* pnumber = 0;
= No object can be allocated the address 0, so address O
indicates that the pointer has no target.
o You could test the pointer
= if (pnumber == NULL)
cout << endl << “pnumber is null.”;
= if (!Ipnumber)
cout << endl << “pnumber is null.”;

23

The Address-Of Operator

0 How do you obtain the address of a
variable?

= pnumber = &nhumber;
Store address of number in pnumber

&number =——

Address: 1008

pnumber I e

pnumber = &number;
Figure 4-5

The Indirection Operator

0 Use the indirection operator *, with a
pointer to access the contents of the
variable that it points to.
= Also called the “de-reference operator”

0 Ex4_05.cpp on P.175

25

Why Use Pointers?

0 Use pointer notation to operate on data
stored in an

0 Allocate space for variables

0 Enable access within a to arrays,
that are defined outside the function

26

char* proverb = “A stitch in tinme saves nine.”,;
o This looks similar to a char array.

char proverb[] = “A stitch in tinme saves nine.”;
o It creates a string literal (an array of type const
char)

with the character string appearing between the quotes,
and terminated with \0

O It also stores the address of the literal in the
pointer proverb.

o Compare Ex4_04 on P.171 with Ex4_06 on P.178
cout will regard ‘pointer to char’ as a string

27

Arrays of Pointers

char* pstr[] = { "Rober Redford",

yi

"Hopalong Cassidy",
"Lassie",

"Slim Pickens",
"Boris Karloff",
"Oliver Hardy"

28

0 Using pointers may eliminate the waste of
memory that occurred with the array
version.

= In Ex4_04, the char array occupies 80 * 6 =
480 bytes.

15 bytes
s{Rlo|ble|r|t| [R|e|d|f|o]|r|d]oO

17 bytes
= H|o|pla|l|o|n|g Cla|s|s|i|d|y|\0

! Toytes
pstr[1] = Lja|s|s|lI|e|\P©
pstr[2]
pstr[3] 13 bytes
pstr{4] »s|i|i|m| [P|li]lc|k|e|n]|s|\O
pstr[5]
Pointer array 24 bytes 14 bytes
=Blo|r|i|s Kia|r|l|lo|fT]|T[NO
13 bytes
sSsolt{iv]elr| [H[a|r[d[y]o
Total Memory Is 103 bytes 29

Flgure 4-7

0 One problem of Ex4 07 is that, the
number of strings (6) is “hardwired” in the
code.

o If you add a string to the list, you have to
modify the code to and change it to be 7.

o Can we make the program automatically
adapt to however many strings there are?

30

O The sizeof operator gives the number of bytes
occupied by its operand
It produces an integer value of type size_t.

size_t is a type defined by the standard library and is
usually the same as unsigned int.

o Consider Ex4 07

cout << sizeof dice;

this statement outputs the value 4, because i nt occupies 4
bytes.

cout << sizeof(int);

You may also apply the si zeof operator to a type name
rather than a variable

o Ex4_08.cpp can automatically adapts to an
arbitrary number of string values.

31

Pointers and Arrays

o Array names can behave like pointers.

= If you use the name of a one-dimensional array by itself,
it is automatically converted to a pointer to the first
element of the array

o If we have

= double* pdata;
= double data[5];
O you can write this assignment
= pdata = data;
Initialize pointer with the array address
= pdata = &data[1];
pdata contains the address of the second element

32

0 You can perform addition and subtraction
with pointers.

O Suppose pdata = &data[2];

The expression pdata+1 would refer to the
address of data[3];
pdata += 1;

Increment pdata to the next element

The value of pdata will actually increase by
sizeof(double) instead of only 1.

pdata++;

33

De-reference a Pointer with Arithmetic

0 Assume pdat a is pointing to dat a[2],
= *(pdata + 1) = *(pdata + 2);
= is equivalent to
= data[3] = datal4];

double data[5];

dataj0] data[1] data[2] data[3] data[4]
I I A O
\ J [} A
-
Each element
occupies 8 bytes Address
pdata+1 pdata+2

¥
pdata = &data[2];

Flgure 4-8
34

Dynamic Memory Allocation

0 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time
Int n = 0;
cout << "Input the size of the vector -

error C2057: expected constant expression

35

o To hold a string entered by the user, there
IS N0 way you can know in advance how
large this string could be.

0 Free Store - When your program is
executed, there is unused memory in your
computer.

0 You can dynamically allocate space within
the free store for a new variable.

36

o Request memory for a double variable,
and return the address of the space
doubl e* pval ue = NULL,;
pval ue = new doubl e;

o Initialize a variable created by new
pval ue = new doubl €(9999. 0);

0 Use this pointer to reference the variable
(indirection operator)
*pval ue = 1234. 0;

37

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.

del et e pval ue;

Release memory pointed to by pvalue
pval ue = 0;

Reset the pointer to O

0 After you release the space, the memory
can be used to store a different variable
later.

38

Allocating Memory Dynamically for Arrays

o Allocate a string of twenty characters
= char* pstr;
= pstr = new char|[20];
mdelete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

wmpstr = 0O;
Set pointer to null

39

Dynamic Allocation of
Multidimensional Arrays

o Allocate memory for a 3x4 array
= doubl e (*pbeans)[4];
= pbeans = new double [3][4];

o Allocate memory for a 5x10x10 array
= double (*pBigArray)[10][10];
= pBigArray = new double [5][10][10];

o You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.

w delete [] pBigArray;

40

