Chapter 5

Functions

Examples of Functions

oy =2x3-3x2-3x+ 2
o f(x) = sin(x) / cos(x)

0 g(x) = sin(x) / X

Why Do You Need Functions

O A function is a self-contained block of code
with a specific purpose.

0 Sometimes you have to repeat the same
task several times in a program.

= With functions, you don’t need to replicate the
same code at various points.

0 Decompose a large program into smaller
functions makes it easily manageable for
development and testing.

= A typical program will consist of a large
number of small functions, rather than a small
number of large functions.

Structure of a Function

/'l Function to calculate x to the power n
doubl e power (doubl e x, int n) }Function Header

{ \
doubl e result = 1.0:;
for (int I = 1; 1<=n; 1++)

Je .
result *= x; >Function Body

return result:

The Function Header

doubl e power (double x, Int n)

.

type of the function name
return value parameters

o0 The name of a function is governed by the
same rules as those for a variable.

o A function returns either a single value, or
nothing at all (voi d).

= The single value returned can be a pointer,
which contain the address of an array.

Arguments vs. Parameters

Arguments

cout << add _ints{ 2 .3)

Figure 51

A

Argument values replace corresponding
parameters in the function definition

|

int add_ints(int i, int j)

Function % f o
Definition return | +J ;

}

\

Value 5 returned

Parameters

The Function Body

{ O The ret urn Statement
doubl e result = 1.0; = Return a value
- . _ 4. (evaluated from an
T Or_ (nt 1= L expression) to be the
| <=n; 1 +4) functional value.
result *= x; = If the type of return

value is voi d, there

must be no expression.
return result; return:

Using a Function

o Define the function before void print_stars()
it is called. {

cout << "“***Fdddkkkx?

<< endl ;

o However, many
programmers prefer to see ; ht mai n()
main() earlier to have a

global view. { _
= Declare the function using print_stars();
a statement called a cout << “Test” << endl;
function prototype. print_stars():

Function Prototypes

o It contains the same information as
appears in the function header, with the
addition of a semicolon (;).
= doubl e power (doubl e val ue, int Index);

mvoid print_stars();
O Y ou can even omit the names of the parameters
= doubl e power (double, int);

= However, it is better to use meaningful name in a prototype
to increase readability.

Using a Function

0 Ex5_01.cpp on P.236

O Note the 3 ways to call this function:
= Passing constants as arguments
= Outputting the return value of a function
= Using a function as an argument

10

Passing Arguments to a Function

O There are two mechanisms in C++ to pass
arguments to functions

= Pass-by-value
= Pass-by-reference

11

Pass-by-value

o Copied of
arguments are
stored in a
temporary
location in
memory.

o This mechanism
protect your caller
arguments from
being accidentally
modified by a
rogue function.

int index = 2;
double value = 10.0;

double result = power(value, index):

Termporary copies of the arguments
are made for use in the function

copy of value |

+ copy of index

10.0

2

¥

double power { double x

The original arguments are not
accessible here, only the copies.

index 2
value 10.0
{
}
Figure 5-3

intn)

12

Ex5_02.cpp on P.240

I nt mai n(voi d)
{ Iint num= 3;
cout << endl

<< “incr10(num = “ << incr10(num
<< endl << *num=" << num

cout << endl:

return O;

}

int incrl0(int num
{ num += 10;
cout << “In the function, num=
<< num << endl ;
return num

13

Pointers as Arguments to a Function

0 Ex5_03.cpp on P.242
O int * pnum = &nhum; // Pointer to num
o int incr10(int *num); // Function Prototype

o return *num;

o // de-reference the pointer to get the return
value

14

Passing Arrays

O The pointer to the beginning of the array is
passed by value to the function.

0 Ex5_04.cpp on P.243

O doubl e average(double array[], Int count);

O average(val ues,

(si zeof val ues)/(sizeof values[O0]));

= sizeof values = ?
= sizeof values[0] =7

15

What Is a Reference?

O A reference is an alias for another variable
(P.197).
= | ong nunber = O;
= | ong& rnunber = nunber;
= rnunber += 10;
= cout << nunber:

o Difference between a pointer and a reference:
= A pointer needs to be de-referenced

m A reference is an alias. There is no need for de-
referencing.

Pass-by-reference

0 Remember that a reference is merely an
alias.

0 Ex5_07.cpp on P.247

o The output shows that the function
i ncr 10() is directly modifying the

variable passed.

17

Static Variables in a2 Function

o With only “automatic” variables within a
function, you can’t count how many times
a function is called.

o Within a function, you can declare a
variable as st at i ¢ so that its value
persists from one call to the next.

» Initialization of a static variable within a
function only occurs the first time that the
function is called.

0 Ex5_13.cpp on P.261

18

Recursive Function Calls

0 Recursive function - A function calls itself
= Either directly or indirectly
» funl -> fun2 -> funl

o Fibonacci sequence:
= F(n) = F(n-1) + F(n-2)

= F(0) =0
= F(1) =1
o Factorial

m NI = NX¥(N-1)*(N-2)%*.. *3%2%1
= F(n) =n * F(n-1)
= F(0) =1

O Be sure to specify the boundary condition to stop
the recursive call!

19

