Chapter 6

More about Program
Structures

Pointers

O A pointer stores an address
= which point to a variable of some type

0 A single pointer can point to different
variables at different times

/a

P 3 > b

- \
*p:b
*p:

C C

Pointers to Functions

o A pointer to functions also provide you the
flexibility.

= It will call the function whose address was last
assigned to the pointer.

0 A pointer to a function must contain

m T
m T
m T

ne memory address of the function
ne parameter list

ne return type

Declaring Pointers to Functions

0 double (*pfun) (char*, int);

= The parentheses around the pointer name, pf un, and
the asterisk are necessary.

= Otherwise, doubl e *pfun (char*, int)
would be a function returning a pointer to a double value.

o long sun(l ong nunl, |ong nun?);
olong (*pfun)(long, long) = sum

o long product(long, |ong);
o pfun = product;

Ex6_01.cpp on P.273

pdo_It { product (3, pdo_It(4.5)),6)
L AL A

equivalent to

sum (4.5)

results in

l

product (3,9)
LY r

results in

!

pdo_It (27 .6)
5\ S

equivalent to

-

sum (27,6) — produces —= 33
Figure 6-1

A Simpler Example

0 As a matter of fact, I think Ex6_01.cpp is
too complicated. I prefer the following
example:

= pdo it = product;

= cout << pdo it(3,5) << endl;
mpdo it = sum

mcout << pdo 1t(3,5) << endl;

A Pointer to a Function as an Argument

0 Ex6_02.cpp on P.275

Arrays ot Pointers to Functions

0O doubl e sun{doubl e, doubl e);
0 doubl e product (doubl e, doubl e);
O doubl e di fference(doubl e, double);

Odouble (*pfun[3]) (double, double) =
{ sum product, difference } ;

= pfun[1] (2.5, 3.6);

m (*pfun) (2.5, 3.6);

= (*(pfun+l)) (2.5, 3.6);

0 You may declare the default value of some
parameters:

void showmt(char nmsg[] = “lI know the
default!”);

o When you omit the argument in calling the
function, the default value will be supplied
automatically.

show t (“Today I s Wednesday. ") ;
show t () ;

o Notes on P.279: Only the last argument(s)
can be omitted.

o Function overloading allows you to use the same
function name for defining several functions as
long as they each have different parameter lists.

o When the function is called, the compiler chooses
the correct version according to the list of
arguments you supply.

o The following functions share a common name,
but have a different parameter list:

int max(int array[], int len);
| ong max(long array[], int |en);
doubl e max(double array[], int len);

10

Ex6_07.cpp on P.287

0 Three overloaded functions of max()

o In main(), C compiler inspect the
argument list to choose different version
of functions.

11

0 The signature of a function is determined by its
name and its parameter list.

o All functions in a program must have unique
signatures

o The following example is not valid overloading
doubl e max(l ong array[], int len);
| ong max(long array[], int |en);

o A different return type does not distinguish a
function, if the signatures are the same.

12

oIn Ex6_07.cpp, you still have to repeat the
same code for each function, with
different variable and parameter types.

0 You may define a function template to ask
C compiler automatically generate
functions with various parameter types.

13

Detining a Function Template

tenpl ate<typenane T> T max(T x[],
{
T max = x[0];
for (int 1 =1; 1 < len; i++)
1f (max < x[1])
max = X[1];
return nax;

I nt | en)

14

o Each time you use the function nax() in your
program, the compiler checks to see if a function
corresponding to the type of arguments that you
have used in the function call already exists.

If the function does not exist, the compiler creates one
by substituting the argument type in your function call
to replace the parameter T.

o Compare Ex6_08.cpp and Ex6_07.cpp to see how
the source code is reduced.

Note that using a template doesn’t reduce the size of
your compiled program.

o Q: Can we calculate the length of the array inside
the function?

15

Topics 1n This Semester

Part 1: Object-Oriented Programming

- Defining Your Own Data Types

- More on Classes

- Class Inheritance and Virtual Functions

Part 2: Windows Programming

- Windows Programming Basics

- Microsoft Foundation Classes (MFC)

- Working with Menus and Toolbars

- Drawing in a Window

- Creating the Document and Improving the View
- Working with Dialogs and Controls

- Storing and Printing Documents

- Writing Your Own DLLs (optional)

Part 3: Database Application

- Connecting to Data Sources

- Updating Data Sources

- Applications Using Windows Forms

- Accessing Data Sources in a Windows Forms Application 16

%&%JQ/ ugﬁﬁ

04 ZRNRERATE 9

'ﬁ

08 ZH

EOS

—

THE
06 ZHIERELANER

D%%ﬁm%%Lﬁ%%%%
A E TR EBE AR HE

O ZHliafiE

2l

02 7 14 35
02 5 18 33

Y EIRE 01 5 15 37
016 {EZEEFE N

W 1 6 17 17 17

EI/] n%*i
THIE T A

17

Exam

o Date: March 6th (Thursday)
o Time: 8AM-11AM
0 Scope: Chapter 1 — Chapter 6

o Open Book; Turn Off Computer

18

Chapter 1: Programming with Visual
C++ 2005

o The .NET Framework
0 The Common Language Runtime (CLR)

0 Using the Integrated Development
Environment (IDE)

19

Chapter 2: Data, Variables, and

Calculations

o Defining Variables

o Fundamental Data Types
= Integer
= Character
= Boolean
= Floating-Point

o Basic Input/Output Operations
0 Variable Types and Casting
o Storage Duration and Scope

20

Chapter 3: Decisions and Loops

o Comparing Values
= if ... else ...
= switch
= The Conditional Operator

0 Repeating a Block of Statements

= for loop

continue
break

= while loop
= do-while loop

0 Nested loop

21

Chapter 4: Arrays, Strings, and Pointers

O Arrays
= Declaring Arrays
= Initializing Arrays
= Character Arrays
= Multidimensional Arrays
0 Indirect Data Access — Pointer

o Dynamic Memory Allocation

22

0 Structure of a Function

0 Passing Arguments to a Function
The Pass-by-value Mechanism
Pointers as Arguments to a Function
References as Arguments to a Function
o Returning Values from a Function
Returning a Pointer
Returning a Reference
Static Variables in a Function

O Recursive Function Calls

23

Chapter 6: More about Functions

o Pointers to Functions

o Initializing Function Parameters
O Exceptions

o Function Overloading

o Function Templates

24

o Goal

Design a program which acts as a calculator.

It will take an arithmetic expression, evaluate it, and
print out the result.

For example, taking the input string
“2 % 3.14159 * 12.6 *12.6 /2 + 25.2 * 25.2”
will obtain the result “1133.0".
o To make it simple at the first stage,
The whole computation must be entered in a single line.
Spaces are allowed to be placed anywhere.
Parentheses are not allowed in the expression.
Only unsigned numbers are recognized.

25

Step 1: Eliminating Blanks from a String

Index i is not incrementad at

these positions because they

contain a space.

These spaces are overwritten

by the next non-space
character that is found in
huffer.

Flgure 6-2

The buffer array before copyving its contents to liself

%

+
51* 3|0

The buffer array after copying its contents to Iiself

26

P.295

/1 Function to elimnate spaces froma string
voi d eat spaces(char* str)

{
int 1 = 0; [/ *Copy to' index to string
int | = 0O; [l *Copy from index to string
while ((*(str + 1) = *(str + j++)) = *\0")
1 f (*(str + i) 1=+ *)
| ++:
return;
}

o Now, we obtain an expression with no embedding spaces.

27

Step 2: Ewvaluating an Expression

%

) e

{0
\End of input

ferm ferm term

addop addop
Figure 6-3

Breaking Down an Expression into
Terms and Numbers

expression
’ A The value of the expression is returned by the expr()
term addop term addop term = function
A A . .
rnumberw' 4 number multop numb-eﬁ number The value of each term is returned by the term() function
fdigit digit\' rdigﬂ point digit\' rdigit digit\' fdigit u:Iigit\' The v_alue of each number is returned by the number()
function
Y Y Y
213+ (3| . |5 ** 11 |(T7|-1212|2|Vf e
k End of input
Flgure 6-4

29

Handling addop

doubl e expr(char* str)

{
doubl e value = 0.0;
I nt 1 ndex = 0;
value = tern(str, index);
for (;;)
{
swtch (*(str + index++))
{
case ‘\0’:
return val ue;
case ‘-':
value -= tern(str, index);
case '+’ :
value += tern(str, index);
def aul t:
cout << endl << “Arrrgh!*#!'l There's an error” <<
endl ;
exit(1l);
}
}

31

Getting the value of a Term

0o P.298

32

Analyzing a Number

digits in number

A
{ N

5 1 3
ASCI codes as decimal values ? 53 | 49| 51
Intial value = 0
1st digit value = 10%value + (53 - 48)
=10*0.0+5

= 5.0

'

2nd digit value = 10*value + (49 - 48)
=10*5.0 +1
=51.0

!

Ard digit value = 10*value + (51 - 48)
=10*61.0 + 3
=513.0

Figure 66

doubl e nunmber (char* str, int& index)

{

doubl e val ue = 0.0:;

while (isdigit(*(str + Index)))
value = 10 * value + (*(str + index++)

I f (*(str + index) !'=".")
return val ue;

doubl e factor = 1.0;
while (isdigit(*(str + (++index))))
{
factor *= 0. 1;
value = value + (*(str + index) — ‘0")

return val ue;

- '0");

* factor;

34

Handling the fractional part after the
decimal point

digits in integral digits in fractional

part of number part of number
5] 1 3 G 0 B8
ASCIl codes as decimal values ? 53|40 | 51| 46| 54 | 49 | 56
EBefare the decimal point
value = 513.0
factor = 1.0

factor = 0.1 *factor 'J'
1st digit value = value + factor* (54 - 48)
=512.0+ 0.1*6
=513.6

factor = O.1*factor l
2nd digit value = value + factor*(49 - 48)

=513.6 + 0.01*0
= 513.60

factor = Q.1 *factor 'J'
ard digit value = value + factor* (56 - 48)
=513.60 + 0.001*8
=513.608

Figure 6-7

Putting the Program Together

o P.302 Ex6_09.cpp

= #i nclude <iostreanr// For stream i nput/out put
= #i nclude <cstdlib> // For exit() function
= #i nclude <cctype> // For isdigit() function

o Usecin.getline() sothat the input string
can contain spaces.
= See P.167

36

O Let us try to extend it so that it can
handle parentheses:

2*(3+4)/6-(5+6)/ (7+ 8)

0 Idea: treat an expression in parentheses
as just another number.
P.304
expr () recursively calls itself
expr() — term() — nunber() — expr()

The string pointed by psubstr is allocated in
extract (), and must be freed as an array/

37

extract ()

0 Extract a substring between parentheses

Finding ")' with the (" count at zero

Signals start of substring indicates the end of the parenthesized
substring has been reached
l ariginal expression string
Ll2l+lslc]s[-lep /2] [cJa]a]+]o])])]
" count: 9000111101000111110
copy replace
l with "0

a Y
2[+Ja|+|c]s]-Ja[h[rsf2]*[cfafa][+]o]) 0]

Substring that was between parentheses
Figure 6-8

0 P.306

= Utilize strcpy_s() which is defined in
<cstri ng> header file -

