Chapter 11

Windows Programming
Concepts

Windows Programming Basics

0o Windows API

o Microsoft Foundation Classes (MFC)
o Windows Forms

Elements of a Windows

si .
o0 Let us go through them to be e
MDI parent window Sizing border
sure we have a common Ol ar SR
. child window ild window client area
understanding of what the o , ,
Child window icon Parent window client area
terms mean. Toolbar Child window bar text Close button

u parent WindOW, Chlld WindOW Menu bar Title bar text Maximize button
= border, size grip

= title bar, title bar icon, status
bar

Title bar icon Status bar Minimize button
| |
|4 Ex1_04 - Ex1_041 M=}

File Edit WView |Window Help

CEd 0 &R

JEx1_041- =X

| Position (0,0} increasing x n —

system menu
= click the title bar icon,
= or right-click the title bar
= client area
X increasing from left to right,
y increasing from top to

increasing y

bottom
= minimize, maximize, close [Ready
buttons Figure 11-1

The Windows API

o0 The Windows API was developed in the
days when C was the primary language.

= Structures rather than classes are frequently
used.

Windows Data Types

o P.618 o All these types are
= BOOL contained in the header file
= BYTE W ndows. h
= CHAR o Always use the Windows
= DWORD type. S ;
HANDLE = For example, The Windows
: HBRUSH type WORD has been
defined in one version of
= HCURSOR Windows as type unsigned
= HDC short,
= HINSTANCE In another Windows
= LPARAM yetrsion as type unsigned
LPCSTR Int.
: LP(I-:IiNDLE On 16-bit machines these
two types are equivalent,
= LRESULT but on 32-bit machines
= WORD they are different!

Notation in Windows Programs

0 Hungarian notation — variable names have a prefix which
indicating what kind of value it holds

= b — boolean

sz — zero terminated string
w — WORD, which is unsigned short

= by — byte

= C-char

= dw - DWORD, which is unsigned long
= fn — function

= h - handle

m | —int

= | -long

= |p — long pointer
= Nn-—int

= p — pointer

= S — string

H

H

The Structure of a Windows Program

WINDOWS

Figure 11-2

o For a minimal
Windows program,
you will only write two
iIndependent functions.

= WinMain()

It initialize the
application.

= WindowProc()

This is usually the
larger portion to
handle user interaction.

o int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE
hPrelnstance, LPSTR IpCmdLine, int nCmdShow);

hIinstance — a handle to an instance

An instance stands for a running program

A handle is an integer value which identifies something
hPrelnstance — the handle to the pervious instance.

This parameter is always NULL in newer versions of Windows.

In Windows 3.x, you need this to know that there is previous
instance of the program or not.

IpCmdLine — a string containing the command line
nCmdShow — determines how the window looks
SW_SHOWNORMAL
SW_SHOWMINNOACTIVE
SW_HIDE
SW_SHOWMAXIMIZED

o See MSDN library online at http://msdn.microsoft.com/

WinMain() Needs to Do Four Things

o Tell Windows what kind of window the
program requires

0 Create the program window
o Initialize the program window

0 Retrieve Windows messages intended for
the program

10

o struct WNDCLASSEX (P.623)
WindowClass.cbSize = sizeof(WNDCLASSEX);

WindowClass.style = CS_HREDRAW |
CS_VREDRAW;

Redraw if the vertical height or the horizontal width is
altered.

WindowClass.|lpfnWndProc = WindowProc;

WindowClass.lpszClassName = “OFWin”;
The name of the application

11

Creating a Program Window

o RegisterClassEx(&WindowClass);

o HWND hWnd;
hWnd = CreateWindow(

szAppName, // the window class name
L"A Basic Window", // The window title
WS_OVERLAPPEDWINDOW, // Window style as overlapped
CW_USEDEFAULT, // Default screen position of upper left
CW_USEDEFAULT, // corner of our window as X,y...
CW_USEDEFAULT, // Default window size
CW_USEDEFAULT, // ...
0, // No parent window
0, // No menu
hInstance, // Program Instance handle
0 // No window creation data

)i

o ShowWindow(hWnd, nCmdShow);

12

Initializing the Program Window

o UpdateWindow(hWnd);

= This will ask Windows to send your program a
message, which will invoke the code in the
WindowProc() function to redraw the client.

This is the best way to get the client area drawn.

13

Dealing with Windows Messages

o The Message Loop (P.628)
= GetMessage()
= TranslateMessage()
Do some conversion for keyboard messages
= DispatchMessage()
Call the WindowProc() function

struct MSG

{
HWND hwnd; // handle to the window
UINT message; // The message ID

WPARAM wParam;

LPARAM IParam;

DWORD time; // Timestamp of the message
POINT pt; // The mouse position

14

Conceptual Operation of GetMessage()

GetMessages()

Message?

Windows

Get the Message

Your Program

N
return
TRUE
return
FALSE

WinMain()

while(GetMessages())

¥
run
another
application

Figure 11-3

15

A Complete WinMain() Function

o P.631

16

 RESULT CALLBACK WindowProc(HWND
N"Wnd, UINT message, WPARAM wParam,
_PARAM |Param);

hWnd — a handle to the window in which the
event causing the message occurred

message — the message ID
WM_PAINT, WM_LBUTTONDOWN

wParam — a 32-bit value
IParam — a 32-bit value

17

Decoding a Windows Message

o Selecting the message types that you want to process by putting a case
statement for each case in the swi t ch.

switch(message)

{ case WM_PAINT:
// Code to deal with drawing the client data
break;

case WM _LBUTTONDOWN:
// Code to deal with the left mouse button being pressed
break;

case WM_LBUTTONUP:
// Code to deal with the left mouse button being released
break;

case WM _DESTROY:
// Code to deal with a window being destroyed
break;

default:
// Code to handle any other messages
)

18

Drawing the Window Client Area

O

O

O

O

O

O

HDC hDC;
= Display context handle

PAINTSTRUCT PaintSt;

= Structure defining area to be drawn

hDC = BeginPaint(hWnd, &PaintSt);

= Prepare to draw the window

RECT aRect;
= A working rectangle

GetClientRect(hWnd, &aRect);
= Get upper left and lower right of client area

SetBkMode(hDC, TRANSPARENT);
= Set text background mode

19

Draw the text in the window client area

DrawText(hDC,

L"But, soft! What light through yonder window
breaks?",

-1,
&aRect,

DT_SINGLELINE]|
DT_CENTER]|

DT_VCENTER);

o EndPaint(hWnd, &PaintSt);
= Terminate window redraw operation

20

A Complee W ndowPr oc() Function

O P.636

Ex11_0Ol.cpp

0o P.637

= #i ncl ude <wi ndows. h>
= Declare W ndowPr oc() before W nMai n() .

0 Create a project using the Win32 Project
= Instead of Win32 Console Application.

22

H

Sﬂiﬁi%#ﬁ)

=

L

0 OVEEIAHE -
O OFHHEN] -
0 OG-
0 OESHIEL :
0 OFaergist -
0 OVEENRAE

P R
08 : 30

=575

B 7Ns5 T B SRR A A

E17

BN (2048E

—

N

|

o 08:30 k%

1)

23

