R G
Background |0 0
— black
Pen — red 1 0
XORed 1 0
R G
Background |1 0
— red
Pen — red 1 0
XORed 0 0

Chapter 15

Creating the Document
and Improving the View

Line vs. Curve

Left mouse button

down Line is fixed when the

mouse button is released

Left mouse button
up

Cursor movement

Line is continuously updated as the
cursor moves

Figure 14-7

Left mouse button up
stops tracking of the

Left mouse cursor and ends
button curve.
down

Cursor path

Curve is defined by straight line
segments joining successive cursor
positions

Figure 14-10

Figure 15-6

/ OnLButtonUp() called

OnLbuttonDown() 11

stores point Xi’yl\
1

OnMouseMove()

calls CreateElement(), which ___-2
will call the constructor with

the points x,,y, and x,,y,

OnMouseMove() /

calls AddSegment() with the

point x.,y,
OnMouseMove() /

calls AddSegment() with the
point x,,y,

10

~ OnMouseMove()
calls AddSegment() with the

point x, .Y,

3

4

Figure 15-6

o MFC provides you with a large number of
collection classes for managing data.

They are useful especially when you have no
advance knowledge of how many items you
will need to manage.

o MFC supports three kinds of collections
(three shapes), differentiated by the way
in which the data items are organized.

Array
List
Map

Array

0 Elements in array collections are indexed
from O.

o Template class: CArray

= CArray<CPoint, CPoint&> PointArray;

To avoid the overhead in copying objects when
passed by value, the second argument is usually a
reference.

The CArray Template Class (1)

0 An array collection can automatically grow
to accommodate more data items.

Figure 15-1

Array Collection: CArray<ObjectType, ObjectType&> anArray

Type of object to be / \

Argument type to be used

stored
Index
-
0 Object1
1 Rigesia SetSize(5)
2 Object3 >~ Defines the
Getﬂ\t(Q)\\A . / : initial size
t this index 3 Object4
4 Objectb J
5 Object6

/Index returned\@ AnObject |
L e e]

Add (AnObject)
\Stores the object

Increases are
automatic

Figure 15-1

o A doubly linked list

It has backward and forward pointing links.
It can be searched in either direction.

It grows automatically when required.
It is fast in adding items, compared with CArray.

If there are lots of data items in the list, it can be
slow in searching for an item.

0 CList<ObjectType, ObjectType&> alist;
CList<CPoint, CPoint&> PointList;

Adding Elements to a List

o Both the AddHead() and AddTai | () functions
return a value of type PGSI TI ON, which specifies

the position of the inserted object in the list.

List Collection: CList<ObjectType, ObjectType&> aList

Type of object to be / \ e Hm——

stored

/Stores the object
AddHead (ThisObject) _A - =

ThisObject F—

=

pointer pointer

Objectl

pointer poirter

Increases in size
are automatic

Object4

pointer pointer

—:_ ThatObject I(_

AddTail (ThatObject)
\Stores the object

Figure 15-2

Retrieving Elements in a List

0 GetAt()
0 GetNext()
0 GetPrev()

List Collection:

Type of object to be /

stored

The position of a particular element
is given by a value of type
POSITION

\6
Rog

A

CList<ObjectType, ObjectType&> alList

™

Argument type to be used

Returns Objectl

Objectl GetNext(aPos)

""""""" retrieves the element at
aPos and sets aPos to
the next element

Increments aPos >

poi

5 ThisObject [—
pointer
; <
> Objectl |—
)
L | ; <
= Object2
i <
Y Object3
: <
- Objectd
nter
— ThatObject &

Figure 15-3

11

Iterating through a List

0 GetHeadPosition() & GetTailPosition()

0 GetNext() & GetPrev()

= The position variable will become NULL if you use GetNext() to
retrieve the last object.

CPoi nt Current Point (0, 0);
/] Get the position of the first list el enment
POSI TI ON aPosi tion = PointList. Get HeadPosition();

while (aPosition) // Loop while aPosition is not NULL

{
Current Poi nt = Poi ntLi st. Get Next (aPosition);

/'l Process the current object

12

Moditying a List

o InsertBefore()
= PointList.InsertBefore(aPosition, ThePoint);
o InsertAfter()

o SetAt()
= PointList.SetAt(aPosition, aPoint);

13

o Find()
POSITION aPosition = PointList.Find(ThePoint);

By default, this function only compares the address of the
argument with the address of each object in the list.

This implies that if the search is to be successful, the
argument must actually be an element in the list — not a

copy.
o FindIndex()

You can also obtain the position of an element in a list

by using an index value.
The first element is at index 0, the second at index 1, and

SO On.

0 GetCount()
Return how many objects are there in a list.

14

Removing Objects from a List

o RemoveHead()
if('PointList.IsEmpty())
PointList.RemoveHead();
0 RemoveAt()
= PointList.RemoveAt(aPosition);
o RemoveAll()
= PointList.RemoveAll();

15

The CMap Template Class

o A map stores an object and key combination.
= This technique is sometimes called hashing.

= A key is used to retrieve the item from the map, so it
should be unique.

It is fast in storing data items and also in searching,
because a key takes you directly to the item.

For sequential access, arrays or lists are faster.

o Four arguments are needed to declare a map:
= CMap<LONG, LONG&, CPoint, CPoint&> PointMap;

16

Retrieving Items in a Map

Key argument type / /

Key argument type

Accesses the object
corresponding to the key

(— Stores the object
Key4

LookUp(Key3,AnObject);

Map Collection: CMap<KeyType, KeyType&, ObjectType, ObjectType&> aMap

\

™

Object argument type

Type of object to be
stored

aMap[Key2]=0bject2; —— Adds an object—l

Keyl — Objectl
Key2 — Object2

Key3 — Object3
Object4

Figure 15-4

17

Using the ClList Template Class

0 A curve is defined by two or more points.

= Storing these points in a list would be a
natural solution.

Left mouse button up
stops tracking of the
u nd ends

Figure 14-10

18

Define a Cl.ist collection c.

ass object as

a member of the CCurve cl

4SS

[l Elenments.h

class CCurve : public CEl enment

{
pr ot ect ed:
CCurve(void);
CLi st <CPoi nt, CPoi nt&> m Poi ntLi st
publi c:
~CCurve(voi d);
virtual void Draw(CDC* pDC); // Fucntion

/'l Constructor for a curve object
CCur ve(CPoi nt Fi rst Poi nt,

voi d AddSegnent (CPoi nt & aPoi nt) ;

/'l Type safe point

CPoi nt SecondPoi nt

| i st

to display a curve

COLORREF aCol or);

// Add a segnent to the curve

19

CSketcherView.cpp

o Modify the definition of the
CreateElement() function to call the
CCurve class constructor with correct
arguments.

case CURVE:

return new CCurve(m FirstPolnt,
m SecondPoi nt, pDoc->Get El enent Col or ()) ;

20

OnMouseMove()

o P.776 (compare with P.750)
| f (CURVE == Get Docunent ()->Cet El enent Type())
[/ Is it a curve?

{

static_cast<CCQurve*>(m pTenpEl enent) ->
AddSegnent (m SecondPoi nt) ;

m _pTenpEl enent - >Dr aw(&DC) ;
return,

}

aDC. Set ROP2(R2_NOTXORPEN); // Set the draw ng node

o Move the call to SetROP2() to a position after the
code processing a curve.

21

CCurve Constructor

CCur ve: : CCurve(CPoi nt FirstPoint, CPolnt

{

SecondPoi nt, COLORREF aCol or)

m _Poi nt Li st. AddTai | (Fi r st Poi nt) ;
m _Poi nt Li st. AddTai | (SecondPoi nt) ;
m Col or = aCol or;

m Pen = 1;

m Encl osi ngRect = CRect (Fi r st Poi nt,
SecondPoi nt) ;

22

Enclosing Rectangle

SIXY-A

The first two points
define a basic
curve

1
Each additional point defines 1
another segment i

Minimum x

Maximum x

Drawing a curve with MM_TEXT mapping mode

Minimum y

Maximum y

Figure 15-5

23

AddSegnent ()

voi d CCurve: : AddSegnent (CPoi nt & aPoi nt)

{

m _Poi nt Li st. AddTai | (aPoi nt) ;

m _Encl osi ngRect =

CRect (m n(aPoi nt .
m n(aPoi nt .
max(aPoi nt .
max(aPoi nt .

m_Encl osi ngRect
m_Encl osi ngRect
m _Encl osi ngRect
m _Encl osi ngRect

left),

.top),
.right),
.bottom);

24

Dr aw()

o P.778

POSI TI ON aPosition =
m_Poi nt Li st. Get HeadPosi tion();

| f (aPosition)
pDC- >MoveTo(
m _Poi nt Li st. Get Next (aPosition));

whi | e(aPosi ti on)
PDC- >Li neTo(
m _Poil nt Li st. Get Next (aPosition));

25

Exercising the CCurve Class

L Ske er - Sket

File Edit View Element Color Window Help
DEME Y 2R &2 \NO0A ammm

Figure 15-7

26

Final Exam

o Date: June 12, 2008
oTime: 08:10-11:00
o Classroom: TC-113

o Scope: Chapter 2 — Chapter 15
o Open book
o Turn off computer & mobile phone

27

o Date: June 19, 2008
o Time: 08:10-11:00
o Classroom: H-103

o Twelve students will be selected to try again.

The other students just take your examination papers
and leave.

o Each will be randomly assigned a problem which
is similar to but different from the previous
homework.

o If you can solve it in 15 minutes, you pass!

o You can read the textbook, but you are not
allowed to retrieve source code via the network.

28

