Chapter 8

Destructor &
Operator Overloading

0 A destructor is a function that is called
when an object is no longer required.

A constructor is a function which is called
when a new object is created.

A constructor is usually used to initiate an
object.

A destructor is usually used to destroy an
object,
This is necessary, when some data members are
dynamically allocated. (See Chapter 4)

Dynamic Memory Allocation

0 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time
Int n = 0;
cout << "Input the size of the vector -

error C2057: expected constant expression

o To hold a string entered by the user, there
IS N0 way you can know in advance how
large this string could be.

0 Free Store - When your program is
executed, there is unused memory in your
computer.

0 You can dynamically allocate space within
the free store for a new variable.

o Request memory for a double variable,
and return the address of the space
doubl e* pval ue = NULL,;
pval ue = new doubl e;

o Initialize a variable created by new
pval ue = new doubl €(9999. 0);

0 Use this pointer to reference the variable
(indirection operator)
*pval ue = 1234. 0;

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.

del et e pval ue;

Release memory pointed to by pvalue
pval ue = 0;

Reset the pointer to O

0 After you release the space, the memory
can be used to store a different variable
later.

Allocating Memory Dynamically for Arrays

o Allocate a string of twenty characters
= char* pstr;
= pstr = new char|[20];
mdelete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

wmpstr = 0O;
Set pointer to null

Dynamic Allocation of
Multidimensional Arrays

o Allocate memory for a 3x4 array
= doubl e (*pbeans)[4];
= pbeans = new double [3][4];

o Allocate memory for a 5x10x10 array
= double (*pBigArray)[10][10];
= pBigArray = new double [5][10][10];

o You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.

w delete [] pBigArray;

0 The destructor for a class is a member
function with the same name as the class,
preceded by a tilde (~).

For the CBox class, the prototype of the clas
destructor is ~CBox() ;

A destructor has no parameters.

0 Ex8_01.cpp on P.400
~CBox ()

{

cout << “Destructor called.” << endl:

}

o Suppose you want to define a class
Each object contains a text string.

You don’'t want to declare a data member as a large
character array (like char [200]),

So you'll allocate memory in the free store for the
message when an object is created.

o This is your constructor:
CMessage(const char* text = “Default nessage”)

{

pnmessage = new char[strlen(text) + 1];
strcpy(pnessage, text);

10

strlen, strcmp, strepy

#i ncl ude <i ostreanp
#i ncl ude <cstring>
usi ng std::cout;
usi ng std::endl;

i nt mai n()
{
char a[20] = " NCNU';
char b[20] = "Sunday";
cout << sizeof a << " " << strlen(a) << endl;

Il size = 20, string length = 4

I f (strcnp(a,b) < 0)
cout << "The string " << a
<< " is less than " << b << endl;

strcpy(a, b);
cout << a << endl;

} 11

Destructors and
Dynamic Memory Allocation

CMessage(const char* text = “Default nessage”)

{

pnessage = new char[strlen(text) + 1];
strcpy(pnessage, text);

}

~CMessage()
{

cout << “Destructor called.” << endl:
delete [] pnessage;

}

12

o As the output indicates, the destructor is
called only once.
The object motto is created automatically, so

the compiler also calls the destructor
automatically.

If you manually “delete pM”, it will free the
memory pointed to by pM.

Because the pointer pM points to a CMessage
object, this causes the destructor to be
invoked.

13

Behavior of a Default Copy Constructor

CMessage nottol(“Radiation fades your genes.”);
CMessage notto2(nottol); // Calls default copy constructor

CMessage mottol (¥ Radiation fades your genes .”) ;

maottol

pmessage | address

\
\

[Radiation fades your genes.

CMessage motto2 (mottod) ; /4 Calls
the default copy constructor

mottol motto2

copy
pmessage [address. —

-~

Radiation fades your genes, ‘

14

Figure 8-1

o We don’'t want the two objects sharing the same
string in the memory.

o If mottol is destroyed, the pointer in motto2 will
become invalid.

O Let us implement a copy constructor to generate
an object which is identical but independent of
the old one.

CMessage(const CMessage& initM)

{

pmessage = new char [strlen(initM.pmessage) +1];
strcpy(pmessage, initM.pmessage);

»

15

o Operator overloading is a very important
capability.
It allows you to make standard C++ operators, such as

+, -, * and so on, work with objects of your own data
types.

We want to write
if (box1 > box2)
instead of
if (IsGreaterThan(box1, box2))

o Let us recall some background of function
overloading (Chapter 6).

16

o Function overloading allows you to use the same
function name for defining several functions as
long as they each have different parameter lists.

o When the function is called, the compiler chooses
the correct version according to the list of
arguments you supply.

o The following functions share a common name,
but have a different parameter list:

int max(int array[], int len);
| ong max(long array[], int |en);
doubl e max(double array[], int len);

17

Ex6_07.cpp on P.287

0 Three overloaded functions of max()

o In main(), C compiler inspect the
argument list to choose different version
of functions.

18

0 The signature of a function is determined by its
name and its parameter list.

o All functions in a program must have unique
signatures

o The following example is not valid overloading
doubl e max(l ong array[], int len);
| ong max(long array[], int |en);

o A different return type does not distinguish a
function, if the signatures are the same.

19

Implementing an Overloaded Operator

cl ass CBox

{
publ i c:

bool operator> (CBox& aBox) const,;
}
o The word oper at or here is a keyword.

0 You declare the oper at or>() function as

const because it doesn’t modify any data
members of the class. (P.362)

20

Using an Overloaded Operator

o if (box1l > box2)
cout << “box1 is greater than box2”;

o if (box1l.operator>(box2))

if(box1 > box2)

Function argumesnt l

hool CBox::operator>{const CBox& aBox) const
{

—— The object peinted to by this j

return (this->Volume(}) > (aBox.Volume());

]
Figure 83

21

Ex3_03.cpp on P.412

bool CBox: :operator> (CBox& aBox) const

{

return this->Volume() > aBox. Vol une();

}

o The left operand is defined implicitly by the
pointer this.

o The basic > operator returns a value of type int
= 1 for true
= O for false.

o It will be automatically converted to bool.

22

Overloading the Assignment Operator

o What's wrong with the default assignment?

= It simply provides a member-by-member
copying process, similar to that of the default
copy constructor.

= They suffer from the same problem, when
some data members are allocated dynamically.

23

Fixing the Problem

CMessage& operator= (const CMessage& aMess)
{
/'l Rel ease nmenory for 1st operand
delete [] pnessage;
pnessage = new char [strlen(aMess. pnessage) + 1];

/| Copy 2" operand string to 1st
strcpy(this->pnessage, aMess. pnessage) ;

/'l Return a reference to 1st operand
return *this;

24

O Consider this statement
mottol = motto2 = motto3;

0 The assignment operator is right-
associative, so it translates into
mottol = (motto2.operator=(motto3));
mottol.operator=(motto2.operator=(motto3));

0 You must at least return a CMessage
object.

25

0 Consider another example
(mottol = motto2) = motto3;

o This translates into
(mottol.operator=(motto2)) = motto3;

o If the return type is merely CMessage
instead of a reference, a temporary copy

of t

T
o

ne original object is returned.
nen you are assigning a value to a temporary

Dject!

Make sure that your return type is CMessage&.

26

o The first thing that the operator function
does is to delete the memory allocated to
the first object, and reallocate sufficient
memory to accommodate the new string.

o What happens to this statement?

mottol = mottol

o Add this checking:
if (this == &aMess)
return *this;

27

