
1

Chapter 7

Defining Your Own

Data Types

2

What Is a struct?

� A structure is a user-defined type
� You define it using the keyword struct

� so it is often referred as a struct.

� Compared to the data types we have seen,
some real world objects must be described
by several items:

� Time – hh:mm:ss

� Point – (x,y)

� Circle – (x, y, r)

3

Defining a struct

struct POINT

{

float x;

float y;

};

� Note:

� This doesn’t define any variables.

� It only creates a new type.

� Each line defining an element in the struct is terminated
by a semicolon

� A semicolon also appears after the closing brace.

4

Creating Variables of Type POINT

POINT p1, p2;

� If you also want to initializing a struct:

POINT p1 =

{

1.0,

2.0

};

5

Accessing the Members of a struct

� Member selection operator (.)
� p1.x = 3.0;

� p2.y += 2.0;

6

Figure 7-1 on P.334

7

Ex7_01.cpp

� Hut2 = Hut1;
� Hut2.Left = Hut1.Left;
� Hut2.Top = Hut1.Top;

� Hut2.Right = Hut1.Right;
� Hut2.Bottom = Hut1.Bottom;

� Putting the definition of the struct at
global scope allows you to declare a
variable of type RECTANGLE anywhere in
the .cpp file.

� Pass by reference

8

Intellisense Assistance with Structures

9

The struct RECT

� There is a pre-defined structure RECT in the
header file windows.h, because rectangles are
heavily used in Windows programs.

struct RECT
{

int left; // Top left point
int top; // coordinate pair

int right; // Bottom right point

int bottom; // coordinate pair
};

10

Using Pointers with a struct

� RECT* pRect = NULL;

� Define a pointer to RECT

� pRect = &aRect;

� Set pointer to the address of aRect

11

A struct can contain a pointer
struct ListElement
{

RECT aRect; // RECT member of structure
ListElement* pNext; // Pointer to a list element

};

12

Linked List

13

Accessing Structure Members through a

Pointer

� RECT aRect = { 0, 0, 100, 100};

� RECT* pRect = &aRect;

� (*pRect).Top += 10;

� The parenthesis to de-reference the pointer
are necessary (P.77)

� pRect->Top += 10;

� Indirect member selection operator

14

Exercise

� Define a struct Sample that contains two

integer data items.

� Write a program which declares two object
of type Sample, called a and b.

� Set values for the data items that belong
to a, and then check that you can copy
the values into b by simple assignment.

15

Dynamic Memory Allocation (P.194)

� Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time
int n = 0;

cout << "Input the size of the vector - ";

cin >> n;

int vector[n];

error C2057: expected constant expression

16

Why Use Pointers? (P.176)

� Use pointer notation to operate on data
stored in an array

� Allocate space for variables dynamically.

� Enable access within a function to arrays,
that are defined outside the function

17

Free Store (Heap)

� To hold a string entered by the user, there
is no way you can know in advance how
large this string could be.

� Free Store - When your program is
executed, there is unused memory in your
computer.

� You can dynamically allocate space within
the free store for a new variable.

18

The new Operator

� Request memory for a double variable,
and return the address of the space
� double* pvalue = NULL;

� pvalue = new double;

� Initialize a variable created by new
� pvalue = new double(9999.0);

� Use this pointer to reference the variable
(indirection operator)
� *pvalue = 1234.0;

19

The delete Operator

� When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.
� delete pvalue;

� Release memory pointed to by pvalue

� pvalue = 0;
� Reset the pointer to 0

� After you release the space, the memory
can be used to store a different variable
later.

20

Allocating Memory Dynamically for Arrays

� Allocate a string of twenty characters
� char* pstr;

� pstr = new char[20];

� delete [] pstr;

� Note the use of square brackets to indicate that you
are deleting an array.

� pstr = 0;

� Set pointer to null

21

Dynamic Allocation of

Multidimensional Arrays

� Allocate memory for a 3x4 array
� double (*pbeans)[4];

� pbeans = new double [3][4];

� Allocate memory for a 5x10x10 array
� double (*pBigArray)[10][10];

� pBigArray = new double [5][10][10];

� You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.
� delete [] pBigArray;

22

HW: Linked List

23

Final Exam

� Date: January 13 (Wednesday)

� Time: 14:10-17:00

� Place: TC-113

� Scope: Chapter 2-7 of Ivor Horton's
Beginning Visual C++ 2008

� CLR programming is excluded.

� Open book

� Turn off computer & mobile phone

