
1

Chapter 16

Creating the Document

and Improving the View

2

Line vs. Curve

3

Figure 16-6 (P.926)

4

Collection Classes

� MFC provides you with a large number of
collection classes for managing data.
� They are useful especially when you have no
advance knowledge of how many items you
will need to manage.

� MFC supports three kinds of collections
(three shapes), differentiated by the way
in which the data items are organized.
� Array

� List

� Map

5

Array

� Elements in array collections are indexed
from 0.

� Template class: CArray

� CArray<CPoint, CPoint&> PointArray;

� To avoid the overhead in copying objects when
passed by value, the second argument is usually a
reference.

6

The CArray Template Class (1)

� An array collection can automatically grow
to accommodate more data items.

7

Figure 16-1 (P.912)

Choose a
proper initial

valueaPoint = PointArray.GetAt(2);
PointArray.SetAt(2, NewPoint);

8

The CList Template Class

� A doubly linked list

� It has backward and forward pointing links.

� It can be searched in either direction.

� It grows automatically when required.

� It is fast in adding items, compared with CArray.

� If there are lots of data items in the list, it can be
slow in searching for an item.

� CList<ObjectType, ObjectType&> aList;

� CList<CPoint, CPoint&> PointList;

9

Adding Elements to a List

� Both the AddHead() and AddTail() functions
return a value of type POSITION, which specifies
the position of the inserted object in the list.

10

Retrieving Elements in a List

� GetAt()

� GetNext()

� GetPrev()

11

Iterating through a List

� GetHeadPosition() & GetTailPosition()

� GetNext() & GetPrev()
� The position variable will become NULL if you use GetNext() to

retrieve the last object.

CPoint CurrentPoint(0,0);

// Get the position of the first list element

POSITION aPosition = PointList.GetHeadPosition();

while (aPosition) // Loop while aPosition is not NULL

{

CurrentPoint = PointList.GetNext(aPosition);

// Process the current object

}

12

Modifying a List

� InsertBefore()

� PointList.InsertBefore(aPosition, ThePoint);

� InsertAfter()

� SetAt()

� PointList.SetAt(aPosition, aPoint);

13

Searching a List

� Find()
� POSITION aPosition = PointList.Find(ThePoint);

� By default, this function only compares the address of the
argument with the address of each object in the list.

� This implies that if the search is to be successful, the
argument must actually be an element in the list – not a
copy.

� FindIndex()
� You can also obtain the position of an element in a list
by using an index value.

� The first element is at index 0, the second at index 1, and
so on.

� GetCount()
� Return how many objects are there in a list.

14

Removing Objects from a List

� RemoveHead()

if(!PointList.IsEmpty())

PointList.RemoveHead();

� RemoveAt()

� PointList.RemoveAt(aPosition);

� RemoveAll()

� PointList.RemoveAll();

15

The CMap Template Class

� A map stores an object and key combination.

� This technique is sometimes called hashing.

� A key is used to retrieve the item from the map, so it
should be unique.

� It is fast in storing data items and also in searching,
because a key takes you directly to the item.

� For sequential access, arrays or lists are faster.

� Four arguments are needed to declare a map:

� CMap<LONG, LONG&, CPoint, CPoint&> PointMap;

16

Retrieving Items in a Map

aMap.SetAt(Key2, Object2);

17

Using the CList Template Class

� A curve is defined by two or more points.

� Storing these points in a list would be a
natural solution.

18

Define a CList collection class object as

a member of the CCurve class
// Elements.h
class CCurve : public CElement
{
protected:

CCurve(void);
CList<CPoint, CPoint&> m_PointList; // Type safe point list

public:
~CCurve(void);
virtual void Draw(CDC* pDC); // Fucntion to display a curve

// Constructor for a curve object
CCurve(CPoint FirstPoint, CPoint SecondPoint, COLORREF aColor);

void AddSegment(CPoint& aPoint); // Add a segment to the curve
};

19

CSketcherView.cpp

� Modify the definition of the
CreateElement() function to call the
CCurve class constructor with correct
arguments.

case CURVE:

return new CCurve(m_FirstPoint,
m_SecondPoint, pDoc->GetElementColor());

20

OnMouseMove()

� P.926 (compare with P.889)
if (CURVE == GetDocument()->GetElementType())

// Is it a curve?

{

static_cast<CCurve*>(m_pTempElement)->
AddSegment(m_SecondPoint);

m_pTempElement->Draw(&aDC);

return;

}

aDC.SetROP2(R2_NOTXORPEN); // Set the drawing mode

� Move the call to SetROP2() to a position after the
code processing a curve.

21

CCurve Constructor

CCurve::CCurve(CPoint FirstPoint, CPoint
SecondPoint, COLORREF aColor)

{

m_PointList.AddTail(FirstPoint);
m_PointList.AddTail(SecondPoint);

m_Color = aColor;
m_Pen = 1;

m_EnclosingRect = CRect(FirstPoint,
SecondPoint);

}

22

Enclosing Rectangle

23

AddSegment()
void CCurve::AddSegment(CPoint& aPoint)
{

m_PointList.AddTail(aPoint);

m_EnclosingRect =
CRect(min(aPoint.x, m_EnclosingRect.left),

min(aPoint.y, m_EnclosingRect.top),
max(aPoint.x, m_EnclosingRect.right),
max(aPoint.y, m_EnclosingRect.bottom));

}

24

Draw()
� P.928
POSITION aPosition =
m_PointList.GetHeadPosition();

if (aPosition)

pDC->MoveTo(
m_PointList.GetNext(aPosition));

while(aPosition)

pDC->LineTo(
m_PointList.GetNext(aPosition));

25

Exercising the CCurve Class

