Chapter 8

Destructor &
Operator Overloading

0 A destructor is a function that is called
when an object is no longer required.

A constructor is a function which is called
when a new object is created.

A constructor is usually used to initiate an
object.

A destructor is usually used to destroy an
object,
This is necessary, when some data members are
dynamically allocated. (See Chapter 4)

Dynamic Memory Allocation (P.194)

0 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time

int n = 0;
cout << "Input the size of the vector - ";

cin >> n;

int vector[n],§<ii?\\\\\\\

error C2057: expected constant expression

o To hold a string entered by the user, there
IS N0 way you can know in advance how
large this string could be.

0 Free Store - When your program is
executed, there is unused memory in your
computer.

0 You can dynamically allocate space within
the free store for a new variable.

o Request memory for a double variable,
and return the address of the space
double* pvalue = NULL;

pvalue = new double;

o Initialize a variable created by new
pvalue = new double(9999.0);

0 Use this pointer to reference the variable
(indirection operator)
*pvalue = 1234.0;

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.

delete pvalue;

Release memory pointed to by pvalue
pvalue = 0;

Reset the pointer to O

0 After you release the space, the memory
can be used to store a different variable
later.

Allocating Memory Dynamically for Arrays

o Allocate a string of twenty characters
® char* pstr;
m pstr = new char[20];
m delete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

m pstr = 0;
Set pointer to null

Dynamic Allocation of
Multidimensional Arrays

o Allocate memory for a 3x4 array
w double (*pbeans) [4];
m pbeans = new double [3][4];

o Allocate memory for a 5x10x10 array
m double (*pBigArray) [10][10];
m pBigArray = new double [5][10][10];

o You always use only one pair of square brackets
following the delete operator, regardless of the
dimensionality of the array.

w delete [] pBigArray,

0 The destructor for a class is a member
function with the same name as the class,
preceded by a tilde (~).

For the cBox class, the prototype of the clas
destructor is ~CBox () ;

A destructor has no parameters.
0 Ex8_01.cpp on P.410
~CBox ()

{
cout << “Destructor called.” << endl;

Class CMessage (1)

o Suppose you want to define a class
= Each object contains a text string.

= You don’t want to declare a data member as a large
character array (like char [2001]),

= So you’ll allocate memory in the free store for the
message when an object is created.
o This is your constructor:
CMessage (const char* text = “Default message”)
{
pmessage = new char[strlen(text) + 1];

strcpy (pmessage, text);

10

strlen, stremp, strepy

#include <iostream>
#include <cstring>
using std::cout;
using std::endl;

int main ()

{

char a[20] = "NCNU";
char b[20] = "Sunday";
cout << sizeof a << " " < strlen(a) << endl;

// size = 20, string length = 4

1if (strcmp(a,b) < 0)
cout << "The string " << a
<< " i1s less than " << b << endl;

strcpy(a, b);
cout << a << endl;
} 11

Destructors and
Dynamic Memory Allocation

CMessage (const char* text = “Default message”)

{

pmessage = new char[strlen(text) + 1];

strcpy (pmessage, text);

~CMessage ()

{
cout << “Destructor called.” << endl;

delete [] pmessage;

12

o As the output indicates, the destructor is
called only once.
The object motto is created automatically, so

the compiler also calls the destructor
automatically.

If you manually “delete pM”, it will free the
memory pointed to by pM.

Because the pointer pM points to a CMessage
object, this causes the destructor to be
invoked.

13

Behavior of a Default Copy Constructor

CMessage mottol (YRadiation fades your genes.”);
CMessage motto2 (mottol); // Calls default copy constructor

CMessage mottol (¥ Radiation fades your genes .” } ;

maottol

pmessage

\

[Radiation fades your genes.

CMessage motto2 (mottol) ;
the default copy constructor

mottol

pmessage

copy

/4 Calls

motto2

P

Figure 8-1

Radiation fades your genes, l

14

QQ: What will the second
mottoZ.ShowIt () display?

CMessage mottol ("A stitch i1n time saves

nine.”);

CMessage mottoZ (mottol) ;

mottoZ.ShowIt (),

//

strcpy (mottol .pmessage,

for no man.");
mottol.ShowIt () ;
mottoZ.ShowIt (),

//
//

Display 2nd message

"Time and tide wailt

Display lst message

Display 2nd message

15

o We don’t want the two objects sharing the same
string in the memory.

o If mottol is destroyed, the pointer in motto2 will
become invalid.

O Let us implement a copy constructor to generate
an object which is identical but independent of
the old one.

CMessage(const CMessage& initM)

{

pmessage = new char [strlen(initM.pmessage) +1];
strcpy(pmessage, initM.pmessage);

»

Exercise: Modify Ex8_02.cpp to
implement this copy constructor. 16

