
1

Chapter 14

Drawing in a Window

2

The Window Client Area (P.664)
 A coordinate system that is local to the window.
 It always uses the upper-left corner of the client area as its

reference point.

3

Graphical Device Interface (GDI)

 You don’t draw pictures directly to the
screen.

 You must define the graphical output
(lines, circles, text) using the Graphical
Device Interface.

 The GDI enables you to program graphical
output independently of the hardware

 Such as the display screen, printers, plotters

4

What Is a Device Context?
 You must use a device context to draw anything

on a graphical output device.
 In a word, a device context is a data structure

defined by Windows.
 A device context contains attributes such as

 Drawing color
 Background color
 Line thickness
 Font
 Mapping mode

 Your output requests are specified by device-
independent GDI function calls.
 A device context contains information that allows

Windows to translate those requests into actions on the
particular physical output device.

5

Mapping Modes (1) P.665

 MM_TEXT

 A logical unit is one device pixel with positive x
from left to right, and positive y from top to
bottom of the window client area.

(0,0)

Figure 14-1

6

Mapping Modes (2)

 MM_LOENGLISH (P.667)
 A logical unit is 0.01 inches with positive x from left to

right, and positive y from the top of the client area
upwards.

 Consistent with what we learned in high school.

 By default, the point at the upper-left corner has the
coordinates (0,0) in every mapping mode.

 Coordinate are always 32-bit signed integers.

Figure 14-2

7

The View Class in Your Application

 In the class CSketcherView, the function
OnDraw() is called when a WM_PAINT

message is received in your program.

 Windows sends this message to your program
whenever it requires the client area to be
redrawn.

 The user resizes the window

 Part of your window was previously “covered” by
another window

8

The OnDraw() Member Function

void CSketcherView::OnDraw(CDC* pDC)// P.668

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

// TODO: add draw code for native data here

}

Returns the address of the
document object related to the

current view (P.616)

Make sure the pointer pDoc
contains a valid address.

Make sure the pointer pDoc is
not null.

9

Assertion Failed

Using Assertions (P.708)
#include <iostream>

#include <cassert>

using std::cout;

using std::endl;

int main()

{

int i;

for (i=0; i<=6; i++)

cout << i;

assert(i == 6);

return 0;

}

10

11

The CDC Class (P.669)

 You should do all the drawing in your program
using members of the CDC class.
 C – Class

 DC – Device Context

 There are over a hundred member functions of
this class.

 Sometimes you use objects of CClientDC
 It is derived from CDC, and thus contains all the

members we will discuss.

 Its advantage is that CClientDC always contains a device
context that represents only the client area of a window.

12

Current Position

 In a device context, you draw entities
such as lines, and text relative to a
current position.

 You may set the current position by calling
the MoveTo() function.

13

MoveTo()
 The CDC class overloads the MoveTo() function in two

versions to provide flexibility.
 CPoint MoveTo(int x, int y);

 CPoint MoveTo(POINT aPoint);

 POINT is a structure defined as:
typedef struct tagPOINT

{

LONG x;

LONG y;

} POINT;

 CPoint is a class with data members x and y of type LONG.

 The return value from the MoveTo() function is a CPoint
object that specifies the position before the move.
 This allows you to move back easily.

14

Drawing Lines (P.670)

Figure 14-3

15

LineTo()

 The CDC class also defines two versions of
the LineTo() function

 BOOL LineTo(int x, int y);

 BOOL LineTo(POINT aPoint);
 You may use either a POINT struct or a CPoint object

as the argument.

16

Ex16_1 (P.671)
 When the LineTo() function is executed, the current

position is changed to the point specifying the end of the
line.
void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)

return;

pDC->MoveTo(50,50);
pDC->LineTo(50,200);
pDC->LineTo(150,200);
pDC->LineTo(150,50);
pDC->LineTo(50,50);

}

17

Figure 14-4 (P.671)

(50,50)

(50,200) (150,200)

(150,50)

Exercise: Lines and Rectangles

18

 Create an MFC
application.

 Modify the
OnDraw() member
function of your
View class, to draw
a figure like this.

 The coordinates are
for your reference.
You don’t need to
show them.

(150,150)

(200,200)

19

Drawing Rectangles & Circles
void CSketcherView::OnDraw(CDC* pDC)

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

pDC->Rectangle(50,50, 150, 150);

pDC->Ellipse(50,50, 150,150);
pDC->Ellipse(200,50, 400,150);

}

20

A circle is a special ellipse

(50,50)

(150,150)

(200,50)

(400,150)

Exercise: Circles

 Use a for-loop in
OnDraw() to draw a
figure like this.

 Note that a rectangle or
an ellipse has a solid
background color
(default to be white).
Therefore, if you plot
the smaller circles first,
they will be covered by
larger ones.

21

(200,200)

Exercise: Square Wave

 Write a program to draw the square wave
below.

 Observe the pattern. You can see it is a
repetition of 8 periods, so you can use a
for-loop to easy repeat the same pattern.

22

Exercise: Sine Wave

 Write a program to draw
the sine wave from 0
degree to 720 degree.

 Recall that you learned
in Calculus class that,
you can approximate a
smooth curve by a
series of line segments.

23

x=0o

x=360o

x=90o

x=270o

Exercise: Drawing a Polygon

 Use LineTo() and
Ellipse() to draw the
following figure.

 Be advised to design
your drawing function
to be generic enough,
because a few weeks
later you will re-use
this function to draw
polygons with 5
vertices, 7 vertices, or
3 vertices.

24

25

Arc

 Another way to draw circles is to use the Arc()
function.
 BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3, int

x4, int y4);

 (x1, y1) and (x2, y2) define the upper-left and lower-right
corners of a rectangle enclosing the circle (ellipse).

 The points (x3, y3) and (x4, y4) define the start and end
points of the arc, which is drawn counterclockwise.

 If (x4, y4) is identical to (x3, y3), you get a circle.

 BOOL Arc(LPCRECT lpRect, POINT Startpt, POINT Endpt);

 lpRect points to an object of the class CRect, which has
four public data members: left , top, right, bottom.

26

Drawing with the Arc() Function

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)

return;

pDC->Arc(50,50,150,150,100,75,150,100);

CRect aRect (250,50,300,100);
CPoint Start(275,100);
CPoint End(250,75);
pDC->Arc(&aRect, Start, End);

}

(50,50)

(150,150)

(100,75)

(150,100)

(275,100)(250,75)

27

Figure 14-5 (P.673)

28

Drawing in Color

29

Using a Pen
 Declare a pen object and initialize it as a red solid

pen drawing a line 2 pixels wide (P.675)
CPen aPen;
aPen.CreatePen(PS_SOLID, 2, RGB(255, 0, 0));

CPen* pOldPen = pDC->SelectObject(&aPen);
pDC->Arc(50,50,150,150,100,75,150,100);

pDC->SelectObject(pOldPen);
CRect aRect(250,50,300,100);
CPoint Start(275,100);
CPoint End(250,75);
pDC->Arc(&aRect, Start, End);

30

Pen Style

 BOOL CreatePen(int aPenStyle, int
aWidth, COLORREF aColor);

 PS_SOLID – solid line

 PS_DASH – dashed line

 PS_DOT – dotted line

 PS_DASHDOT – alternating dashes and dots

 PS_DASHDOTDOT – alternating dashes and
double dots.

 PS_NULL – draw nothing

31

Creating a Brush (P.676)
 A brush is actually an 8x8 block of patterns that’s repeated over

the region to be filled.
 All closed shapes in CDC will be filled with a brush (and a color).
 Select the brush into the device context by calling the

SelectObject() member (similar to selecting a pen).

CBrush aBrush(RGB(0,255,255));

CBrush* pOldBrush =
pDC->SelectObject(&aBrush);

const int width = 50;
const int height = 50;
int i;
for (i=0; i<6; i++)
pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

pDC->SelectObject(pOldBrush);

32

Solid Brush

DeleteObject() (P.676)
CBrush aBrush;

for (int i=0; i<25; i++)

{

aBrush.CreateSolidBrush(RGB(0,i*10,i*10));

CBrush* pOldBrush = pDC->SelectObject(&aBrush);

pDC->Rectangle(i*20, 10, i*20+10, 100);

aBrush.DeleteObject();

}

33

34

Hatching Style (P.676)
 HS_HORIZONTAL

 HS_VERTICAL

 HS_FDIAGONAL

 HS_BDIAGONAL

 HS_CROSS

 HS_DIAGCROSS

CBrush aBrush;

aBrush.CreateHatchBrush(HS_DIAGCROSS,
RGB(0,255,255));

CBrush* pOldBrush = pDC->SelectObject(&aBrush);

SketcherView.cpp
void CSketcherView::OnDraw(CDC* pDC)

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

CBrush aBrush(HS_DIAGCROSS, RGB(0,255,255));

CBrush* pOldBrush =
pDC->SelectObject(&aBrush);

const int width = 50;

const int height = 50;

int i;

for (i=0; i<6; i+=2)

pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

pDC->SelectObject(pOldBrush);

for (i=1; i<6; i+=2)

pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

}

35

36

A Hatched Brush

The BrushHatch enumeration
typedef enum

{

HS_HORIZONTAL = 0x00000000,

HS_VERTICAL = 0x00000001,

HS_FDIAGONAL = 0x00000002,

HS_BDIAGONAL = 0x00000003,

HS_CROSS = 0x00000004,

HS_DIAGCROSS = 0x00000005

} BrushHatch;

CBrush aBrush;

for (int i=0; i<6; i++)

{

aBrush.CreateHatchBrush(i,
RGB(0,0,0));

CBrush* pOldBrush = pDC-
>SelectObject(&aBrush);

pDC->Rectangle(i*100+50, 50,
i*100+100, 150);

aBrush.DeleteObject();

}

37

Summary

 The client coordinate system

 Drawing in the client area

 Device contexts

 Mapping modes

 Drawing in a window

 Line, Rectangle, Ellipse, Arc

 Pen

 Brush

38

Homework: Pentagon

 Draw a pentagon like
this.

 You may need to
include <cmath> if
you want to call the
sin/cos functions.

39

(cos,sin)(cos2,sin2)

(cos4,sin4)

(cos3,sin3)

Homework

 Use LineTo() and
Ellipse() to

draw the following
figure.

 Hint: You may
need to include
<cmath> to utilize
the sin() and
cos() functions.

40

Exercise: Colorful Bricks

 Use
CreateSolidBrush()
to write a program
generating the
output as shown in
this figure.

41

Exercise: Create a Patterned Brush
// Create a hatched bit pattern.

WORD HatchBits[8] = { 0x18, 0x24, 0x42, 0xFF, 0x18, 0x24, 0x42, 0xFF, };

// Use the bit pattern to create a bitmap.

CBitmap bm;

bm.CreateBitmap(8,8,1,1, HatchBits);

// Create a pattern brush from the bitmap.

CBrush brush;

brush.CreatePatternBrush(&bm);

// Select the brush into a device context, and draw.

CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brush);

pDC->RoundRect(CRect(50, 50, 200, 200), CPoint(10,10));

// Restore the original brush.

pDC->SelectObject(pOldBrush);

42

如何學好程式設計

整理筆記

學以致用

43

