A struct can contain a pointer (P.274)

struct ListElement

{

RECT aRect;

ListElement* pNext;
i

// RECT member of structure
// Pointer to a list element

LE1 LE2 LE3
members: members: members:
aRect aRect aRect
pNext = &LE2 — pNext = &LE3 — pNext = &LE4
L LE4 LE5S
members: members:
aRect aRect
pNext = &LES5 —— pNext = nullptr ——J) No next element

FIGURE 7-3 |inked List 33



Create a Linked List

struct ListElement

{

int value;
ListElement* pNext;

Y

int main ()

{

ListElement LE5S =
ListElement LE4
ListElement LE3
ListElement LE2
ListElement LE1 =
PrintList (&LE1) ;
return 0O;

~

~

Il
P T e S
~

N W Ol
~

~

NULL
&LES
&LE4
&LE3
&LEZ

—_—— M

// value of an element

~eo ~oe ~oe e

e

// Polinter to a list element

34



Print a Linked List

vold PrintList (ListElement* p)

{
while (p != NULL)

{
std::cout << p->value;

p = p—->pNext;

35



Dynamic Memory Allocation (P.163)

0 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time

int n = 0;
cout << "Input the size of the vector - ";

cin >> n;

int vector[n];\iii?\\\\\\\

error C2057: expected constant expression

36



Why Use Pointers? (P.148)

O Use pointer notation to operate on data
stored in an array

0 Enable access within a function to arrays,
that are defined outside the function

O Allocate space for variables dynamically.

37



Free Store (Heap)

o To hold a string entered by the user, there
IS N0 way you can know in advance how
large this string could be.

O Free Store - When your program is
executed, there is unused memory in your
computer.

O You can dynamically allocate space within
the free store for a new variable.

38



The new Operator

o Request memory for a double variable,
and return the address of the space
m double* pvalue = NULL;

®m pvalue = new double;
o Initialize a variable created by new
m pvalue = new double (9999.0);

0 Use this pointer to reference the variable
(indirection operator)
m *pvalue = 1234.0;

39



The delete Operator

o When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.

m delete pvalue;

Release memory pointed to by pvalue
m pvalue = NULL;

Reset the pointer to NULL

O After you release the space, the memory
can be used to store a different variable
later.

40



Allocating Memory Dynamically for Arrays

0 Allocate a string of twenty characters
® char* pstr;
W pstr = new char[20];
m delete [] pstr;

Note the use of square brackets to indicate that you
are deleting an array.

m pstr = 0;
Set pointer to null

41



Exercise:

Sorting Unknown Number of Integers

1.

Write a program to read a series of positive
integers from the user. The total number of
input is unknown. Stop when the user supplies
O or a negative number. Then output the series
of numbers in reserve order.

= For example, theinputis1 3572460,
the output willbe 642 75 3 1.

= Hint: Store the input numbers in a linked list.

45



Adding a New Element

3 2 1

head/

0 Allocate a new element to
store the input value.

o Update LE4.pnext to point to
LE3.

0 Update head pointing to LE4.



Adding a New Element

head

0 Allocate a new element to
store the input value.

o Update LE4.pnext to point to
LE3.

0 Update head pointing to LE4.



