
33

A struct can contain a pointer (P.274)
struct ListElement

{

RECT aRect; // RECT member of structure

ListElement* pNext; // Pointer to a list element

};

Linked List

Create a Linked List
struct ListElement

{

int value; // value of an element

ListElement* pNext; // Pointer to a list element

};

int main()
{

ListElement LE5 = { 5, NULL };
ListElement LE4 = { 4, &LE5 };
ListElement LE3 = { 3, &LE4 };
ListElement LE2 = { 2, &LE3 };
ListElement LE1 = { 1, &LE2 };
PrintList(&LE1);
return 0;

}

34

54321

Print a Linked List

void PrintList(ListElement* p)
{

while (p != NULL)
{

std::cout << p->value;
p = p->pNext;

}
}

35

54321

36

Dynamic Memory Allocation (P.163)

 Sometimes depending on the input data,
you may allocate different amount of
space for storing different types of
variables at execution time
int n = 0;

cout << "Input the size of the vector - ";

cin >> n;

int vector[n];

error C2057: expected constant expression

37

Why Use Pointers? (P.148)

 Use pointer notation to operate on data
stored in an array

 Enable access within a function to arrays,
that are defined outside the function

 Allocate space for variables dynamically.

38

Free Store (Heap)

 To hold a string entered by the user, there
is no way you can know in advance how
large this string could be.

 Free Store - When your program is
executed, there is unused memory in your
computer.

 You can dynamically allocate space within
the free store for a new variable.

39

The new Operator

 Request memory for a double variable,
and return the address of the space
 double* pvalue = NULL;

 pvalue = new double;

 Initialize a variable created by new

 pvalue = new double(9999.0);

 Use this pointer to reference the variable
(indirection operator)
 *pvalue = 1234.0;

40

The delete Operator

 When you no longer need the
(dynamically allocated) variable, you can
free up the memory space.
 delete pvalue;

 Release memory pointed to by pvalue

 pvalue = NULL;
 Reset the pointer to NULL

 After you release the space, the memory
can be used to store a different variable
later.

41

Allocating Memory Dynamically for Arrays

 Allocate a string of twenty characters
 char* pstr;

 pstr = new char[20];

 delete [] pstr;

 Note the use of square brackets to indicate that you
are deleting an array.

 pstr = 0;

 Set pointer to null

Exercise:
Sorting Unknown Number of Integers

1. Write a program to read a series of positive
integers from the user. The total number of
input is unknown. Stop when the user supplies
0 or a negative number. Then output the series
of numbers in reserve order.
 For example, the input is 1 3 5 7 2 4 6 0,

the output will be 6 4 2 7 5 3 1.

 Hint: Store the input numbers in a linked list.

45

Adding a New Element

123

head

4

 Allocate a new element to
store the input value.

 Update LE4.pnext to point to
LE3.

 Update head pointing to LE4.

Adding a New Element

123

head

4

 Allocate a new element to
store the input value.

 Update LE4.pnext to point to
LE3.

 Update head pointing to LE4.

