
�

Chapter 2 Assemblers
-- 2.3 Machine-Independent Assembler Features

�

Outline

� Literals
� Symbol Defining Statement
� Expressions
� Program Blocks
� Control Sections and Program Linking

�

Literals

� Consider the following example

� It is convenient to write the value of a constant
operand as a part of instruction

:
LDA FI VE

:
FI VE WORD 5

:

:
LDA =X’ 05’

:

�

Literals

� A literal is identified with the prefix =, followed
by a specification of the literal value

� Examples: (Figure 2.10, pp.68)
45 001A ENDFI L LDA =C’ EOF’ 032010

93 LTORG

002D * =C’ EOF’ 454F46

215 1062 WLOOP TD =X’ 05’ E32011

230 106B WD =X’ 05’ DF2008

1076 * =X’ 05’ 05

ni xbpe di sp
000000 110010 010

�

Literals vs. Immediate Operands

� Literals
� The assembler generates the specified value as a

constant at some other memory location

� Immediate Operands
� The operand value is assembled as part of the machine

instruction

� Examples: (Figure 2.10, pp.68)

55 0020 LDA #3 010003

45 001A ENDFI L LDA =C’ EOF’ 032010

�

Literal Pools

� Normally literals are placed into a pool at the
end of the program
� see Fig. 2.10 (after the END statement)

� In some cases, it is desirable to place literals
into a pool at some other location in the object
program
� Assembler directive LTORG

� When t he assembl er encount er s a LTORG
st at ement , i t gener at es a l i t er al pool
(cont ai ni ng al l l i t er al oper ands used s i nce
pr evi ous LTORG)

� Reason: keep the literal operand close to the instruction

�

Duplicate literals

� The same literal used more than once in the program
� Only one copy of the specified value needs to be stored

� For example, =X’05’ in Figure 2.10 (pp. 68)

� How to recognize the duplicate literals
� Compare the character strings defining them

� Easi er t o i mpl ement , but has pot ent i al pr obl em
(see next)

� e. g. =X’ 05’

� Compare the generated data value
� Bet t er , but wi l l i ncr ease t he compl exi t y of t he

assembl er

� e. g. =C’ EOF’ and =X’ 454F46’

�

Problem of duplicate-literal recognition

� ‘*’ denotes a literal refer to the current value of
program counter

� There may be some literals that have the same name,
but different values

BASE *

LDB =*

� The literal =* repeatedly used in the program has the same name,
but different values

� If a literal value represents an “address” in the
program, the assembler must laso generate the
appropriate the “Modification records”.

	

Literal table

� LITTAB
� Content

� Li t er al name

� Oper and val ue and l engt h

� Addr ess

� LITTAB is often organized as a hash table, using the
literal name or value as the key

�

Implementation of Literal

� Pass 1
� Build LITTAB with literal name, operand value and length,

leaving the address unassigned

� When LTORG or END statement is encountered, assign an address
to each literal not yet assigned an address

� The l ocat i on count er i s updat ed t o r ef l ect t he
number of byt es occupi ed by each l i t er al

� Pass 2
� Search LITTAB for each literal operand encountered

� Generate data values using BYTE or WORD statements

� Generate Modification record for literals that represent an address
in the program

��

Symbol-Defining Statements

� Assembler directive EQU
� Allows the programmer to define symbols and specify their values

Syntax: symbol EQU val ue

� To improve the program readability, avoid using magic numbers,
make it easier to find and change constant values

� Replace
+LDT #4096

� with
MAXLEN EQU 4096

+LDT #MAXLEN

� Define mnemonic names for registers
� A EQU 0 RMO A, X

� X EQU 1

� Expression
� MAXLEN EQU BUFEND- BUFFER

��

Assembler directive ORG

� Assembler directive ORG
� Allow the assembler to reset the PC to values

Syntax: ORG val ue
� When ORG is encountered, the assembler resets its

LOCCTR to the specified value
� ORG will affect the values of all labels defined until the

next ORG
� If the previous value of LOCCTR can be automatically

remembered, we can return to the normal use of
LOCCTR by simply write

ORG

��

Example: using ORG

� In the data structure
� SYMBOL: 6 bytes
� VALUE: 3 bytes (one word)
� FLAGS: 2 bytes

� We want to refer to every field of each entry
� If EQU statements are used

STAB RESB 1100
SYMBOL EQU STAB

VALUE EQU STAB+6

FLAG EQU STAB+9

���
������������

��

Example: using ORG

� If ORG statements are used
STAB RESB 1100

ORG STAB

SYMBOL RESB 6

VALUE RESW 1

FLAGS RESB 2

ORG STAB+1100

� We can fetch the VALUE field by
LDA VALUE, X

� X = 0, 11, 22, … for each entry

Set LOCCTR to STAB

Size of each field

Restore LOCCTR

��

Forward-Reference Problem

� Forward reference is not allowed for both
EQU and ORG.
� All terms in the value field must have been defined

previously in the program.

� The reason is that all symbols must have been defined
during Pass 1 in a two-pass assembler.

• Allowed:

• Not allowed:

ALPHA RESW 1

BETA EQU ALPHA

BETA EQU ALPHA

ALPHA RESW 1

��

Expression

� The assemblers allow “the use of expressions as
operand”
� The assembler calculates the expressions and products a single

operand address or value

� Expressions consist of
� Oper at or

� +, - , * , / (di v i si on i s usual l y def i ned t o pr oduce an
i nt eger r esul t)

� I ndi v i dual t er ms
� Const ant s

� User - def i ned symbol s

� Speci al t er ms, e. g. , * , t he cur r ent val ue of LOCCTR

� Examples
� MAXLEN EQU BUFEND- BUFFER

� STAB RESB (6+3+2) * MAXENTRI ES

��

Relocation Problem in Expressions

� Values of terms can be
� Absolute (independent of program location)

� const ant s

� Relative (to the beginning of the program)
� Addr ess l abel s

� * (val ue of LOCCTR)

� Expressions can be
� Absolute

� Onl y absol ut e t er ms

� Rel at i ve t er ms i n pai r s wi t h opposi t e s i gns f or
each pai r

� Relative
� Al l t he r el at i ve t er ms except one can be pai r ed

as descr i bed i n “ absol ut e” . The r emai ni ng
unpai r ed r el at i ve t er m must have a posi t i ve
s i gn.

��

Restriction of Relative Expressions

� No relative terms may enter into a
multiplication or division operation

� Expressions that do not meet the conditions
of either “absolute” or “relative” should be
flagged as errors.

�	

Handling Relative Symbols in SYMTAB

� To determine the type of an expression, we
must keep track of the types of all symbols
defined in the program.

� We need a “flag” in the SYMTAB for indication.

• ��
�����������
BUFEND - BUFFER

• �������
BUFEND + BUFFER
100 - BUFFER
3 * BUFFER

�

Example: (pp. 67, Figure 2.9)
SYMTAB & LITTAB

Name Value
COPY 0
FIRST 0
CLOOP 6
ENDFIL 1A
RETADR 30
LENGTH 33
BUFFER 36
BUFEND 1036
MAXLEN 1000
RDREC 1036
RLOOP 1040
EXIT 1056
INPUT 105C
WREC 105D
WLOOP 1062

C'EOF' 454F46 3 002D
X'05' 05 1 1076

�� ��� !�����

��

Program Blocks

� Allow the generated machine instructions and
data to appear in the object program in a
different order
� Gather all code segments, data segments and stack

segments

� Program blocks v.s. Control sections
� Program blocks

� Segment s of code t hat ar e r ear r anged
wi t hi n a s i ngl e obj ect pr ogr am uni t

� Control sections
� Segment s of code t hat ar e t r ansl at ed i nt o

i ndependent obj ect pr ogr am uni t s

��

Program Blocks

� Assembler directive: USE
� USE [bl ockname]

� At the beginning, statements are assumed to be part of
the unnamed (default) block

� If no USE statements are included, the entire program
belongs to this single block

� Each program block may actually contain several
separate segments of the source program

� Example: pp. 79, Figure 2.11

��

Program Blocks

� Assembler rearrange these segments to gather
together the pieces of each block and assign address
� Separate the program into blocks in a particular order

� Large buffer area is moved to the end of the object program

� Program readability is better if data areas are placed in the source
program close to the statements that reference them.

� Example: pp, 81, Figure 2.12
� Three blocks are used

� def aul t : execut abl e i nst r uct i ons

� CDATA: al l dat a ar eas t hat ar e l ess i n l engt h

� CBLKS: al l dat a ar eas t hat consi st s of l ar ger
bl ocks of memor y

��

Example: pp. 81, Figure 2.12

"#������$����%&�

'(�������%&�

'�!)�����%&�

���%&�*�����

��

Example: pp. 81, Figure 2.12

"#������$����%&�

'(�������%&�

��

Example: pp. 81, Figure 2.12

"#������$����%&�

'(�������%&�

��

Rearrange Codes into Program Blocks

� Pass 1
� A separate location counter for each program block

� Save and r est or e LOCCTR when swi t ch bet ween bl ocks

� At t he begi nni ng of a bl ock, LOCCTR i s set t o 0.

� Assign each label an address relative to the start of the block
� Store the block name or number in the SYMTAB along with the

assigned relative address of the label
� Indicate the block length as the latest value of LOCCTR for each block

at the end of Pass1
� Assign to each block a starting address in the object program by

concatenating the program blocks in a particular order

��

Rearrange Codes into Program Blocks

� Pass 2
� Calculate the address for each symbol relative to the

start of the object program by adding
� The l ocat i on of t he symbol r el at i ve t o t he

st ar t of i t s bl ock

� The st ar t i ng addr ess of t hi s bl ock

�	

Example of Address Calculation

20 0006 0 LDA LENGTH 032060

� The value of the operand (LENGTH)
� Addr ess 0003 r el at i ve t o Bl ock 1 (CDATA)

� Addr ess 0003+0066=0069 r el at i ve t o pr ogr am

� When t hi s i nst r uct i on i s execut ed
� PC = 0000 (st ar t i ng addr . Of def aul t bl ock) + 0009

� di sp = 0069 – 0009 = 0060

� op ni xbpe di sp

000000 110010 060 => 032060

�� ���
������*��� ���%&�*�� �##�+ ,���
!-./�0 �

�

…+ …+ …+ …+

�

Object Program

� It is not necessary to physically rearrange the
generated code in the object program
� The assembler just simply insert the proper load address in

each Text record.

� The loader will load these codes into correct place

��

Program Blocks Loaded in Memory

Not present
in object program

��

Control Sections and Program Linking

� Control sections
� can be loaded and relocated independently of the other

control sections
� are most often used for subroutines or other logical

subdivisions of a program
� the programmer can assemble, load, and manipulate each

of these control sections separately
� because of this, there should be some means for linking

control sections together
� assembler directive: CSECT

secname CSECT

� separate location counter for each control section

��

� External definition and reference
� instruction in one control section may need to refer to instructions

or data located in another section
� External definition

EXTDEF name [, name]

� EXTDEF names symbol s t hat ar e def i ned i n t hi s
cont r ol sect i on and may be used by ot her
sect i ons

� Ex: EXTDEF BUFFER, BUFEND, LENGTH

� External reference
EXTREF name [,name]

� EXTREF names symbol s t hat ar e used i n t hi s
cont r ol sect i on and ar e def i ned el sewher e

� Ex: EXTREF RDREC, WRREC

� To reference a external symbol, extended format instruction is
needed (why?)

Control Sections and Program Linking

��

Implicitly defined as an external symbol
�1�
��%�*�����
�%�1�*

Example: pp. 86, Figure 2.15

��

Example: pp. 86, Figure 2.15
Implicitly defined as an external symbol

�%�*#�%�*�����
�%�1�*

��

Example: pp. 86, Figure 2.15
Implicitly defined as an external symbol

�%�*#�%�*�����
�%�1�*

��

Assembler Handle External Reference

� Case 1 (P.87)
15 0003 CLOOP +JSUB RDREC 4B100000

� The operand RDREC is an external reference.

� The assembler
� has no i dea wher e RDREC i s

� i nser t s an addr ess of zer o

� can onl y use ext ended f or mat t o pr ovi de
enough r oom (t hat i s , r el at i ve addr essi ng
f or ext er nal r ef er ence i s i nval i d)

� passes i nf or mat i on t o t he l oader

��

� Case 2
190 0028 MAXLEN WORD BUFEND- BUFFER 000000

� There are two external references in the expression, BUFEND and
BUFFER.

� The assembler
� i nser t s a val ue of zer o

� passes i nf or mat i on t o t he l oader
� Add t o t hi s dat a ar ea t he addr ess of BUFEND

� Subt r act f r om t hi s dat a ar ea t he addr ess of BUFFER

� Case 3
� On line 107, BUFEND and BUFFER are defined in the same control

section and the expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND- BUFFER

Assembler Handle External Reference

�	

Object Code of Figure 2.15

�

Object Code of Figure 2.15

��

Object Code of Figure 2.15

��

Records for Object Program

� The assembler must include information in the object
program that will cause the loader to insert proper
values where they are required

� Define record
� Col. 1 D

� Col. 2-7 Name of external symbol defined in this control section

� Col. 8-13 Relative address within this control section (hexadeccimal)

� Col.14-73 Repeat information in Col. 2-13 for other external symbols

� Refer record
� Col. 1 R

� Col. 2-7 Name of external symbol referred to in this control section

� Col. 8-73 Name of other external reference symbols

��

Records for Object Program

� Modification record
� Col. 1 M

� Col. 2-7 Starting address of the field to be modified (hexiadecimal)

� Col. 8-9 Length of the field to be modified, in half-bytes (hexadeccimal)

� Col.11-16 External symbol whose value is to be added to or subtracted

from the indicated field

� Control section name is automatically an external symbol, i.e.
it is available for use in Modification records.

��

Object Program of Figure 2.15

'�2�

��

Object Program of Figure 2.15

3(3-'

433-'

�5,-.(�6 �5,,-3

��

Expressions in
Multiple Control Sections

� Extended restriction
� Both terms in each pair of an expression must be within the same

control section
� Legal : BUFEND- BUFFER

� I l l egal : RDREC- COPY

� How to enforce this restriction
� When an expression involves external references, the assembler

cannot determine whether or not the expression is legal.
� The assembler evaluates all of the terms it can, combines these to

form an initial expression value, and generates Modification
records.

� The loader checks the expression for errors and finishes the
evaluation.

