MONITORING AND TROUBLESHOOTING
MuLTI-DOMAIN NETWORKS USING
MEASUREMENT FEDERATIONS

Enabling Persistent Queries for
Cross-Aggregate

Performance Monitoring

Anirban Mandal, llya Baldin, Yufeng Xin, Paul Ruth, and Chris Heerman

Anirban Mandal, Ilya
Baldin, Yufeng Xin, Paul
Ruth, and Chris Heerman
are with Renaissance
Computing Institute, Uni-
versity of North Carolina
at Chapel Hill.

ABSTRACT

It is essential for distributed, data-intensive
applications to monitor the performance of the
underlying network, storage, and computational
resources. Increasingly, distributed applications
need performance information from multiple
aggregates, and tools need to make real-time
steering decisions based on the performance
feedback. With increasing scale and complexity,
the volume and velocity of monitoring data is
increasing, posing scalability challenges. In this
work, we have developed a persistent query
agent (PQA) that provides real-time application
and network performance feedback to clients/
applications, thereby enabling dynamic adapta-
tions. The PQA enables federated performance
monitoring by interacting with multiple aggre-
gates and performance monitoring sources.
Using a publish-subscribe framework, it sends
triggers asynchronously to applications/clients
when relevant performance events occur. The
applications/clients register their events of inter-
est using declarative queries and get notified by
the PQA. The PQA leverages a complex event
processing (CEP) framework for managing and
executing the queries expressed in a standard
SQL-like query language. Instead of saving all
monitoring data for future analysis, PQA
observes performance event streams in real time,
and runs continuous queries over streams of
monitoring events. In this work, we present the
design and architecture of the PQA, and describe
some relevant use cases.

INTRODUCTION

Advanced multi-layered networks allow widely
distributed computational and storage resources
to be connected to scientific instruments to pur-
sue the goals of data-driven computational sci-
ence. The increasingly dynamic behavior of
networks and the new connectivity options at
different layers enabled by new technologies
have revolutionized the way computational activ-
ities are structured. They permit a move from

static arrangements of resources that persist over
long periods of time to highly dynamic arrange-
ments that respond to the needs of the scientific
applications by dynamically provisioning neces-
sary network and edge resources with some
notion of optimality. Large ensembles of net-
work, computing, and storage resources
inevitably experience performance degradations
and failures, and applications must be informed
of them. Providing feedback about resource per-
formance to the application to enable closed-
loop feedback control and dynamic adjustments
to resource allocations is of utmost importance.
Many monitoring solutions exist today that can
provide such feedback, including perfSONAR,
Ganglia, MonALISA, and so on. However, pre-
senting this information to an application in a
sufficiently abstract and useful fashion still
remains a challenge.

The challenge is even greater when one has
to monitor distributed infrastructure and dis-
tributed applications spanning multiple domains
without a central point of control. In order to
effectively analyze end-to-end bottlenecks (net-
work congestion, high latency, compute load,
storage system bottlenecks), we need a mecha-
nism to federate performance information from
these diverse aggregates and derive useful
insights in an application-specific manner. The
focus should be on gaining high-level insights
important to application performance. This
entails taking a cross-aggregate view of computa-
tional, network, and storage performance, gath-
ering performance metrics (from several
measurement sources, e.g., perfSONAR services,
network infrastructure monitors, XMPP-based
monitoring entities, on-node performance infor-
mation — OS, system, and application counter
data) and reasoning about them in the context of
a particular application execution.

The volume and velocity of monitoring data
are increasing rapidly with increased scale and
complexity of the substrate and increased avail-
ability of monitoring data from various sources,
each capable of generating lots of monitoring
data at a rapid rate. Often, monitoring data is

IEEE Communications Magazine ¢ May 2014

0163-6804/14/$25.00 © 2014 IEEE 157

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Underline

|

The applications/

clients register their
events of interest
using queries and
are notified by the
PQA when those
events occur. The

PQA does not store
monitoring data.

It processes perfor-
mance event streams
in real time using
persistent client
queries.

stored for future analysis to analyze past perfor-
mance. With high-volume performance monitor-
ing data, we can no longer afford to store all
performance data for post-processing and analy-
sis. Since steady state performance is seldom
interesting, not all performance data tends to be
useful. Also, current applications and tools man-
aging application executions need dynamic real-
time feedback of application performance so as
to enable real-time steering based on observed
performance. Thus, we are facing scalability
challenges in dealing with high-volume perfor-
mance data and increasingly need to provide
real-time feedback to tools.

In this work, we address some of the above
challenges. We have developed a persistent
query agent (PQA) that enables persistent
queries on application and system performance.
Applications or clients managing application
execution are able to express important perfor-
mance metrics, threshold conditions, or event
condition combinations using declarative queries.
The PQA enables federated performance moni-
toring by interacting with multiple aggregates
and performance monitoring sources. By lever-
aging a publish-subscribe framework, it asyn-
chronously sends triggers to applications/clients
when relevant performance events occur. The
applications/clients register their events of inter-
est using queries and are notified by the PQA
when those events occur. Our work presents a
novel use of an open source complex event pro-
cessing (CEP) framework to manage and exe-
cute these queries expressed in a standard
SQL-like query language. Instead of saving all
monitoring data for future analysis, the PQA
observes performance event streams in real time,
and runs continuous queries over streams of
events generated from the various performance
monitoring sources.

The remainder of the article is structured as
follows. We describe related work. We present
the motivation, design and architecture of PQA.
We describe some relevant use cases and con-
clude the article.

RELATED WORK

perfSONAR [1] offers a web-services-based
infrastructure for collecting and publishing net-
work performance monitoring. It consists of a
protocol, architecture, and set of tools developed
specifically to work in a multi-domain environ-
ment with the goal of solving end-to-end perfor-
mance problems on network paths crossing
multiple domains. perfSONAR provides hooks
for delivering performance measurements in fed-
erated environments. However, it is the respon-
sibility of higher-level tools to make use of
perfSONAR data in a way that is relevant to a
particular distributed application.

There are several other multi-domain moni-
toring tools. MonALISA [2] is a framework for
distributed monitoring. MonALISA is designed
to easily integrate existing monitoring tools and
procedures to provide metric information in a
dynamic, customized way to other services or
clients. The underlying conceptual framework is
similar to that of perfSONAR. INTERMON [3]
is another multi-domain network monitoring

framework, which focuses on inter-domain quali-
ty of service (QoS) monitoring and large-scale
network traffic analysis. Other notable multi-
domain network monitoring frameworks are
ENTHRONE and EuQoS. In [4], Belghith ef al.
present a case for a configurable multi-domain
networking architecture, and discuss collabora-
tion schemes used to select measurement points
that participate in multi-domain monitoring, and
to configure the parameters of the measurement
points selected.

OMF [5] provides a set of software services
to run repeatable experiments on network
testbeds, and to gather measurements from
those experiments that are potentially running
across several domains. OMF enabled experi-
ments can use the OMF measurement library
(OML) [6] to collect and store any type of mea-
surements from applications.

There has been some work on automated ways
of using and analyzing perfSONAR data.
OnTimeDetect [7] does network anomaly detec-
tion and notification for perfSONAR deployments.
It enables consumers of perfSONAR measure-
ments to detect network anomalies using sophisti-
cated, dynamic plateau detection algorithms.
Pythia [8] is a data analysis tool that makes use of
perfSONAR data to detect, localize, and diagnose
wide area network performance problems. Kissel et
al. [9] have developed a measurement and analysis
framework to automate troubleshooting of end-to-
end network bottlenecks. They integrate measure-
ments from the network, hosts, and application
sources using a perfSONAR-compatible common
representation, and an extensible session protocol
for transport of measurement data, which enables
tuning of monitoring frequency and metric selec-
tion. They leverage measurement data from perf-
SONAR, NetLogger traces, and BLiPP for
collecting host metrics.

PERSISTENT QUERY AGENT

Although there are tools that analyze monitoring
data from multi-domain measurement sources,
they are mostly targeted toward solving one par-
ticular problem. It is difficult to configure or
customize these tools to diagnose cross-aggre-
gate performance problems. Clients cannot pro-
grammatically ask questions about metrics, nor
can they be automatically notified. Also, most of
the tools do an after-the-fact analysis to deter-
mine what went wrong post mortem, which might
not always be possible with proliferation of avail-
able monitoring data. The requirements of appli-
cations and clients to obtain dynamic real-time
cross-aggregate performance feedback pose chal-
lenges not addressed by existing tools. So, we
have developed a persistent query agent for pro-
viding real-time performance feedback to appli-
cations or clients so as to enable steering. The
PQA interacts with multiple aggregates and per-
formance monitoring sources, and asynchronous-
ly sends triggers to applications/clients when
relevant performance events occur. The applica-
tions/clients register their events of interest using
queries and are notified by the PQA when those
events occur. The PQA does not store monitor-
ing data. It processes performance event streams
in real time using persistent client queries.

158

IEEE Communications Magazine * May 2014

solomon
Highlight

solomon
Highlight

The PQA uses an off-the-shelf CEP [10]
engine for managing and executing the queries
expressed in a standard SQL-like query language.
The queries enable complex matching conditions
to be expressed, including temporal windows,
joining of different event streams, as well as fil-
tering, aggregation, and sorting. The CEP engine
behaves like a database turned upside down.
Queries “persist” in the CEP system. Data or
events are not stored, but are rather “watched”
and analyzed as they pass by. In the following
sections, we present the design, architecture, and
current implementation status of the PQA.

PQA ARCHITECTURE

There are various components of the PQA, as
shown in Fig. 1, which are described in more
detail in the following sections.

Persistent query CEP engine: This is the
complex event processing engine that processes
injected performance measurement events and
triggers actions when queries are satisfied. The
various PQA monitoring clients inject events
into the Esper CEP engine.

Trigger listeners: They are responsible for
publishing events of interest when a query is sat-
isfied. Applications/clients interested in those
events can subscribe to events of interest. Typi-
cally, events of interest would correspond to
queries submitted by the applications. Applica-
tions would automatically be notified when such
events occur.

Query manager: It is responsible for manag-
ing application queries through an XML-RPC
interface. Using the query management inter-
face, applications can add and delete new met-
rics to the measurement registry, and register
and delete queries based on those metrics. The
query manager injects new queries and associat-
ed triggers into the Esper engine.

PQA monitoring clients: A perfSONAR web
services (pS-WS) client obtains measurement
data by querying available perfSONAR measure-
ment archives (MA) services. This client injects
event streams into the Esper engine. XMPP
pubsub subscriber clients obtain measurement
data by subscribing to pubsub nodes where mea-
surements are published periodically. Whenever
new items are published on the pubsub node,
this client injects a corresponding event stream
into the Esper engine.

ESPER PERSISTENT QUERY CEP ENGINE

Esper is a framework for performing complex
event processing, available open source from
EsperTech [11]. Esper enables rapid develop-
ment of applications that process large volumes
of incoming messages or events, regardless of
whether incoming messages are historical or real
time in nature. Esper filters and analyzes events
in various ways, and responds to conditions of
interest with minimal latency. CEP delivers high-
speed processing of many events, identifying the
most meaningful events within the event cloud,
analyzing their impact, and taking subsequent
action in real time. Some typical examples of
applications of CEP are in finance (algorithmic
trading, fraud detection, risk management), busi-
ness process management and automation (pro-

GENI authN/authz

R —

et

Persistent query tool

Query management
(XML-RPC API)

Trigger
listeners

44

g

Persistent query CEP engine

A&

registry

Measurement

Persistent query monitoring clients

Ak

)I(M PP
)
0 ~———
)

~—_—

ExoGENI/InstaGENI
slice

-»

- -.....-....»

O~
< oo 1>
ased MF

Figure 1. PQA architecture.

cess monitoring, reporting exceptions, opera-
tional intelligence), network and application
monitoring (intrusion detection, service level
agreement [SLA] monitoring), and sensor net-
work applications (RFID reading, scheduling
and control of fabrication lines) [11].

Relational databases or message-based sys-
tems such as JMS make it very difficult to deal
with temporal data and real-time queries. In
contrast, Esper provides higher abstraction and
intelligence, and can be thought of as a database
turned upside down: instead of storing the data
and running queries against stored data, Esper
allows queries to be stored and the data to be
run through. Response from the Esper engine is
real time when conditions occur that match user
defined queries. The execution model is thus
continuous rather than only when a query is sub-
mitted. It is for this precise reason we have cho-
sen Esper as our persistent query engine.

The Esper Event Processing Language (EPL)
allows queries to be registered into the engine.
A listener class, which is a plain Java object, is
called by the engine when the EPL condition is
matched as events flow in. The EPL enables the
expression of complex matching conditions
including temporal windows, joining of different
event streams, as well as filtering, aggregation,
and sorting. Esper EPL statements can also be
combined together with “followed by” condi-
tions, thus deriving complex events from more
simple events. Events can be represented as Java
classes, JavaBean classes, XML documents, or

IEEE Communications Magazine ¢ May 2014

159

solomon
Highlight

|
In the PQA
architecture, the
clients or applications
are interested in spe-
cific patterns of
events. They might
be interested in
events where values
of certain metrics
exceed or drop
below a threshold,
or where a complex
condition is met with
respect to values of
multiple metrics.

java.util.Map, which promotes reuse of existing
systems acting as message publishers. Esper
offers a mature application programming inter-
face (API) with features like

* Event stream processing and pattern match-
ing. Esper provides:

—-Sliding windows: time, length, sorted,
ranked, accumulating, and so on.

—Named windows with explicit sharing of
data windows between statements.

—Stream operations like grouping, aggrega-
tion, sorting, filtering, merging, splitting, or
duplicating of event streams.

—Familiar SQL-standard-based continuous
query language using insert into, select,
from, where, group-by, having, order-by,
and distinct clauses.

—Joins of event streams and windows, and so
on. Esper provides logical and temporal
event correlation, and pattern-matched
events are provided to listeners.

Event representations: Esper supports
event-type inheritance and polymorphism
as provided by the Java language, for Java
object events as well as for Map-type and
object-array type events. Esper events can
be plain Java objects, XML, object-array

(Object[]), and java.util.Map, including
nested objects and hierarchical maps.

We have leveraged the Esper engine in our
design of the PQA. The PQA monitoring clients
construct simple Java object-based Esper events
and inject them into the Esper engine. The
Esper EPL queries concerning these monitoring
events are injected into the Esper engine by the
query management module. The trigger listeners
are registered with the Esper engine as callbacks
for performance event triggers.

XMPP PuBLISH TRIGGER LISTENERS

The XMPP pubsub specification [12] defines an
XMPP protocol extension for generic publish-sub-
scribe functionality. The protocol enables XMPP
entities to create nodes (topics corresponding to
relevant events) at a pubsub service and publish
information at those nodes; an event notification
(with or without payload) is then broadcast to all
entities that have subscribed to the node and are
authorized to learn about the published informa-
tion. The XMPP pubsub clients can authenticate
with the XMPP server securely using X.509 certifi-
cates. For authorization of clients, we extended an
existing XMPP server (Openfire) code to enable
verification of XMLSEC credentials, which are
signed XML documents generated using the
XMLSEC library. This allows authenticated clients
to publish/subscribe to specific pubsub nodes
based on the rights in their credentials. The XMPP
client authorization work was done as part of a
separate project [13].

We have leveraged the XMPP pubsub mecha-
nism to publish triggers corresponding to events
of interest, as registered by client/application
queries. UpdateListeners or trigger listeners are
Esper entities that are invoked when queries get
satisfied. UpdateListeners are pluggable entities
in the Esper system, which can peek into event
streams and are free to act on the values
observed on the event streams. There can be two
types of UpdateListeners:

e Static UpdateListeners, which are tightly
integrated with the server side of the Esper
engine

* Dynamic client side UpdateListeners,which
can be provided by clients any time and
injected into the Esper system

These ClientSideUpdateListeners can be tai-
lored to queries of interest. When queries get
registered into the PQA, the pubsub node han-
dle is passed back to the client, and is used to
seed the ClientSideUpdateListener. When the
query gets satisfied, the ClientSideUpdateListen-
er uses the pubsub node handle to publish values
observed on the event streams. Depending on
the design of the ClientSideUpdateListener, it
might choose to apply any function (max, cur-
rent, average, etc.) on these values, or ignore
some of them. When new values are published
on the pubsub nodes, the clients are notified
because they subscribe to the same pubsub node
handle. The clients/applications can take adapta-
tion actions based on occurrences of event noti-
fications. The ClientSideUpdateListeners have
publishing rights on the pubsub nodes, and the
clients are granted subscribe rights on the nodes.
New ClientSideUpdateListeners can be imple-
mented using existing templates in a reasonably
straightforward manner, although the currently
available set of UpdateListeners, as implement-
ed in the PQA, are sufficient for simple use
cases.

QUERY MAANAGEMENT

In the PQA architecture, the clients or applica-
tions are interested in specific patterns of events.
They might be interested in events where values
of certain metrics exceed or drop below a thresh-
old, or where a complex condition is met with
respect to values of multiple metrics. The PQA
allows the clients/applications to express these in
terms of queries into the PQA system.

The PQA exposes a simple API for register-
ing and deleting such queries. The current imple-
mentation uses a simple XML-RPC mechanism
to expose this API to the clients. The clients/
applications can register their queries of interest
with the PQA, and the PQA provides a pubsub
node handle to the clients corresponding to the
registered query. The query management system
in the PQA hashes these queries and pushes
them onto the Esper engine for continuous mon-
itoring of event streams. The queries are inject-
ed using a management interface provided by
Esper. The clients/applications can then sub-
scribe to the provided pubsub node handle and
be notified by the XMPP pubsub mechanism
when their queries are satisfied. The query man-
agement system is responsible for managing
queries from multiple clients. Although not
implemented in the current prototype, query
management can be extended to handle client
authentication over SSL using certificates, as
implemented in a separate context by the same
authors [14].

In the PQA, the queries are expressed using
the Esper Event Processing Language (EPL),
which is a declarative language for dealing with
high-frequency time-based event data. EPL
statements derive and aggregate information
from one or more streams of events to join or

160

IEEE Communications Magazine * May 2014

solomon
Highlight

solomon
Highlight

solomon
Highlight

merge event streams, and to feed results from
one event stream to subsequent statements. EPL
is similar to SQL in its use of the “select” clause
and the “where” clause. However EPL state-
ments use event streams and views instead of
tables. Similar to tables in an SQL statement,
views define the data available for querying and
filtering. Views can represent windows over a
stream of events. Views can also sort events,
derive statistics from event properties, group
events or handle unique event property values.

The following is an example EPL statement
that computes the average memory utilization on
a node for the last 20 s and generates an event
of interest when the average memory utilization
exceeds 70 percent.

“select avg(memutil) as avgMemUtil
from MemUtilEvent.win:time(20 sec)
where avgMemUtil > 70"

When a client registers a query with PQA, it
is coupled with a ClientSideUpdateListener that
publishes relevant metrics from the event stream
when the query is satisfied. In the previous
example, the ClientSideUpdateListener may
choose to publish the avgMemUtil value, or the
instantaneous value that triggered the threshold
to go above 70.

A more complex example would be a query
using joins of several performance metrics from
multiple domains.

“select

b.metricName as metricNamel,
ricValue as metricValuel,
m.metricName as metricName2,
ricvValue as metricValue2

from
BWUtilization.win:length(1l) as b,
MemoryUtilization.win:length(l) as m
where b.metricValue > 1.40012E9 and
m.metricvalue > 70"

b.met-

m.met-

Here, the query concerns instantaneous met-
ric values for bandwidth between two endpoints
and memory utilization at an endpoint. The trig-
ger is raised when both the conditions are met.

PQA MONITORING CLIENTS

Distributed application execution entails cross-
aggregate performance monitoring because a
global insight is required to identify performance
bottlenecks. It is important to monitor the per-
formance of not only the system and network
entities in the different aggregates, but also spe-
cific application performance metrics as observed
when applications are executing. One of the
goals of the PQA tool is to be able to gather
these diverse performance metrics from multiple
measurement sources belonging to different
aggregates.

PQA includes different monitoring clients
that continuously gather data from different
sources — system- and application-specific. The
monitoring clients follow a simple design. They
interact with measurement sources using their
respective native APIs, and collect the metric
data. They then construct Esper events corre-
sponding to the observed metric and push event

Workflow
engine

Workflow1

'XMPP
' publish

/pga/workflow1/netX/queryA/res
/pga/workflow1/compY/queryB/res
/pqa/workflow1/storZ/queryC/res

(Query management)::)(

Trigger listeners

)

¥

¢

| Persistent query agent (PQA) |

[Esper engine
(PQA monitoring clients
N

/N N /N
i
I
i
I

Figure 2. PQA scientific workflow use case.

streams into the Esper engine. As of current
implementation, PQA includes PerfSONAR and
XMPP-based clients. It is possible to add new
kinds of monitoring clients.

perfSONAR Clients — The perfSONAR ser-
vice responsible for storing measurement infor-
mation is called a measurement archive (MA).
MAs contain two types of information: data and
metadata. Data represents the stored measure-
ment results, which are mostly obtained by perf-
SONAR measurement points (MPs). This
includes active measurements such as bandwidth
and latency, and passive measurements such as
Simple Network Management Protocol (SNMP)
counter records. Metadata is an object that has
data associated with it. For example, a band-
width test identified by its parameters (i.e., end-
points, frequency, duration) is the metadata
associated with bandwidth measurement. The
MA exposes a web-services interface so that web
service clients can query for data/metadata
stored in the MA. The PQA perfSONAR clients
obtain measurement data by querying available
perfSONAR MA services, and then construct
Esper events that get continuously inserted as
event streams into the Esper engine.

XMPP-based Clients — Measurement informa-
tion can be published by applications or system
monitoring entities using the XMPP pubsub
mechanism so that interested third parties (other
applications, decision engines, workflow tools)
get notified of those measurements. This is a
general method to disseminate instantaneous
performance information. The XMPP-based
PQA monitoring clients subscribe to relevant
pubsub nodes for measurement streams based
on configured events. On event notifications on
the pubsub nodes, these clients construct Esper
events and continuously insert event streams

IEEE Communications Magazine ¢ May 2014

161

solomon
Highlight

Autonomic, dynamic
monitoring and control

4. Register slice for monitoring

"""""""""""""" > [Monitoring policies (condor g, j

Client datanode I/0, bw monitoring,...)

2. Register A
metric %

(Modify request builder)

Client

1 0. Create slice

Y

ORCA/ExoGENI
provisioning

J

3. Regjister
persistent query

Ve

Persistent query agent (PQA)

~

QU&KA'E;%?AEQ;’M j::>(Trigger Iistenersj

E 3

C

Persistent query CEP engine)

registry

=
=
9]
=
o
@
=
wv
S
1]
=

C

Persistent query monitoring clients)

-

J/

1. Start measurement
service and application

v

Figure 3. Register metric and persistent query with PQA; register slice for monitoring.

into the Esper engine. Note that these XMPP-
based PQA monitoring clients are different from
application clients, which query the PQA and
subscribe to XMPP pubsub node handles corre-
sponding to events of interest.

CURRENT STATUS OF PQA SOFTWARE

The current version of the PQA software is
available for download from the following web-
site [15]. The software includes the features
described above — query management, dynamic
registration of new metrics, simple trigger listen-
ers, and an integrated Esper CEP engine. It also
includes two types of example monitoring clients
— a perfSONAR-based client and an XMPP-
based client. Future extensions are envisioned to
support new types of PQA monitoring clients as
we start ingesting monitoring data from a multi-
tude of sources. We have discussed our work on
the PQA at GENI engineering conferences, and
are actively engaging with perfSONAR and
other communities interested in multi-domain
distributed monitoring capabilities.

UsE CASES

The PQA can be used in a multitude of scenar-
ios that require monitoring and distributed, scal-
able, asynchronous notifications. These include
data-intensive distributed scientific workflow
applications running on networked clouds, as in
Fig. 2, where it is important to monitor the per-
formance of the application to determine anoma-
lies, both inside the application and at the
infrastructure level. In this section, we present
this use case, which was demonstrated as part of
the SCInet Network Research Exhibition pro-
gram during the Supercomputing 2013 confer-
ence.

As part of this work, we developed a capabili-
ty for closed-loop feedback control using persis-
tent queries on monitoring data. We utilized the
ExoGENI testbed to execute Montage, a data-
intensive scientific workflow application, using

the Pegasus workflow manager. The slice includ-
ed dynamically provisioned connections over 12,
ESnet, NLR, and BEN, as well as a connection
over SClInet to a data storage host located in
RENCT’s SC ’13 booth. Montage was deployed
on a virtualized HTCondor environment provi-
sioned dynamically from resources on the Exo-
GENI testbed. Slices were provisioned from the
ExoGENI testbed by sending requests for virtual
topologies consisting of a set of virtual machines
(VMs) connected via a broadcast link with a
specified bandwidth.

We showed dynamic scaling of the virtualized
HTCondor cluster based on measurements of
HTCondor idle job queue length. The measure-
ments were continuously published into an
XMPP space by an agent running on the
HTCondor master VM. The measurements were
consumed by an XMPP-based PQA client, and
were fed into the Esper engine. The “IdleJobs”
metric was registered with the PQA, and an EPL
query expressing a constraint was registered with
the PQA, as shown in Fig. 3. In this case, we
chose a simple constraint that if idle job queue
length for a specified period of time in the past
exceeds a certain threshold, a notification is
sent. The asynchronous notifications were sent
to an “autonomic, dynamic monitoring and con-
trol” agent. When the “autonomic, dynamic
monitoring and control” agent received the trig-
gers from the PQA, it initiated scaling actions
(growing or shrinking the virtualized HTCondor
cluster) by sending modification requests to Exo-
GENI, the resource provisioning system. Here,
the “autonomic, dynamic monitoring and con-
trol” agent was a subscriber of persistent query
notifications, and used simple internal policies to
send modification requests. The adaptation flow
is shown in Fig. 4.

We are currently investigating more advanced
versions of this use case, where more complex
sets of multi-domain metrics could be used to
experiment with various dynamic control policies
like adjusting future resource provisioning deci-

162

IEEE Communications Magazine * May 2014

solomon
Highlight

solomon
Highlight

Autonomic, dynamic
monitoring and control

Subscribe (Monitoring policies (condor_g, j Modify slice [

(

event datanode I/0, bw monitoring,...)
XMPP cloud =< -------- >

ORCA/ExoGENI
provisioning

Modify request builder)

Persistent query

triggered :

Persistent query agent (PQA))

QU&KAT;B?XS?)‘? il j::>(Trigger |isteners)

<

Persistent query CEP engine)

registry

=
=
@
=
@
L
=
wv
S
5]
=

(__Persistent query monitoring clients)
N J

Closed-loop feedback control

Measurements

v

Provision more
resources

Figure 4. Dynamic monitoring and closed-loop feedback control using persistent queries.

sions. The PQA can also be used exclusively at
the infrastructure level, monitoring health of dis-
tributed infrastructure, and triggering events to
relevant infrastructure owners when critical
events occur. This entails running continuous
health queries so that analysis happens in real
time, and no archives are required. Other cloud-
based distributed applications like cloud-orient-
ed content delivery networks could leverage
PQA to monitor different performance metrics
with respect to latency and service rates. The
PQA would be useful for network monitoring to
detect end-to-end bottlenecks, when network
paths span multiple domains, and measurement
streams are made available to PQA.

CONCLUSIONS AND FUTURE WORK

We have presented the design, architecture, and
implementation of a persistent query agent. A
PQA enables federated performance monitoring
by interacting with multiple aggregates and per-
formance monitoring sources. The PQA imple-
mentation leverages an open source complex
event processing engine called Esper. The appli-
cations/clients register their events of interest
using declarative queries expressed in EPL, an
SQL-like standard query language. The PQA
processes event streams and asynchronously
sends triggers to applications/clients using an
XMPP pubsub mechanism when relevant perfor-
mance events occur. A PQA is scalable —
instead of storing all monitoring data for future
analysis, a PQA observes performance event
streams in real time, and runs persistent queries
over streams of events generated from the vari-
ous performance monitoring sources. The real-
time performance feedback is useful in a variety
of use cases like provisioning resources for scien-
tific workflows, and anomaly and failure detec-
tion.

In the future, we plan to extend PQA in dif-
ferent directions. We plan to improve the ability
to plug in new kinds of monitoring sources
dynamically. We are also working on extending
the system so that clients are able to add custom

update listeners and hence manage which infor-
mation gets published when an event trigger
happens. Our future plans also include coming
up with measurement ontologies so that it
becomes easier to describe and discover new
metrics.

ACKNOWLEDGMENTS

This work is supported by the DOE DROPS
project, award # DE-FG02-10ER26016/DE-
SC0005286, and the DOE SUPER project,
award # DE-FG02-11ER26050/DE-SC0006925.

REFERENCES

[1] B. Tierney et al., “Instantiating a Global Network Mea-
surement Framework,” tech. rep. LBNL-1452E, Lawrence
Berkeley Nat'l. Lab., 2009.

[2] I. Legrand et al., “MonALISA: An Agent-Based, Dynamic
Service System to Monitor, Control and Optimize Dis-
tributed Systems,” Computer Physics Commun., vol.
180, Dec. 2009, pp. 2472-98.

[3] E. Boschi et al., “INTERMON: An Architecture for Inter-
Domain Monitoring, Modelling and Simulation,” NET-
WORKING 2005, Networking Technologies, Services,
and Protocols; Performance of Computer and Commu-
nication Networks, Mobile and Wireless Communica-
tions Systems, R. Boutaba et al., Eds., vol. 3462 of
LNCS, Springer, 2005, pp. 1397-1400.

[4] A. Belghith et al., “Proposal for the Configuration of
Multidomain Network Monitoring Architecture,” 2011
Int’l. Conf. Info. Networking, Jan. 2011, pp. 7-12.

[5] G. Jourjon, T. Rakotoarivelo, and M. Ott, “A Portal to
Support Rigorous Experimental Methodology in Net-
working Research,” 7th Int’l. ICST Conf. Testbeds and
Research Infrastructures for the Development of Net-
works and Communities, Shanghai, China, Apr. 2011,
p. 16.

[6] J. White et al., “Measurement Architectures for Network
Experiments with Disconnected Mobile Nodes,” Int’l. ICST
Conf. Testbeds and Research Infrastructures for the Devel-
opment of Networks and Communities, Berlin, Germany,
Springer-Verlag, May 2010, pp. 315-30.

[7] P. Calyam et al., "Ontimedetect: Dynamic Network
Anomaly Notification in Perfsonar Deployments,” 2070
IEEE Int’l. Symp. Modeling, Analysis Simulation of Com-
puter and Telecommunication Systems, Aug. 2010, pp.
328-37.

[8] P. Kanuparthy et al., “Pythia: Detection, Localization,
and Diagnosis of Performance Problems,” IEEE Com-
mun. Mag., vol. 51, no. 11, 2013, pp. 55-62.

[9] E. Kissel et al., “Scalable Integrated Performance Analy-
sis of Multi-Gigabit Networks,” 2072 IEEE NOMS, Apr.
2012, pp. 1227-33.

IEEE Communications Magazine ¢ May 2014

163

solomon
Highlight

solomon
Highlight

[10] A. Margara and G. Cugola, “Processing Flows of Infor-
mation: From Data Stream to Complex Event Process-
ing,” Proc. 5th ACM Int’l. Conf. Distributed event-based
System, DEBS ‘11, 2011, pp. 359-60.

[11] EsperTech, http://www.espertech.com, 2013.

[12] “The XMPP Standards Foundation XEP-0060: Publish-
Subscribe http://xmpp.org/extensions/xep- 0060.html.”

[13] GENI Instrumentation and Measurement Framework
(IMF) Project Wiki Document on XMPP Client Authoriza-
tion, http://groups.geni.net/geni/attachment/wiki/
IMFGEC13- QSR/XMPPAuthCred-IMF.docx.

[14] I. Baldine et al., “ExoGENI: A Multi-Domain Infra-
structure-as-a-Service Testbed,” TRIDENTCOM, 2012,
pp. 97-113.

[15] DOE DROPS project website, https://code.renci.org/
gf/project/drops/.

BIOGRAPHIES

ANIRBAN MANDAL (anirban@renci.org) received both his
M.S. (2002) and Ph.D. (2006) degrees in computer sci-
ence from Rice University. He currently works as a
research scientist at RENCI, University of North Carolina at
Chapel Hill. His research interests include provisioning,
scheduling, performance analysis, and measurements for
distributed computing systems, cloud computing, and sci-
entific workflows.

ILYA BALDIN (ibaldin@renci.org) received both his M.S.
(1995) and Ph.D. (1998) degrees in computer science from
North Carolina State University. He is currently the director
of the Network Research and Infrastructure group at

RENCI, University of North Carolina at Chapel Hill. His
research interests include federated distributed networked
systems and architectures, high-speed optical network
architectures, cross-layer interactions, novel signaling
schemes, and network security.

YUFENG XIN (yxin@renci.org) is a senior networking
researcher at RENCI, University of North Carolina at Chapel
Hill. He was a senior scientist at MCNC, RTP, NC, and a
research associate at the University of Maryland, College
Park. His research focuses on high-speed networks, cloud
computing, and smart grid communications. He obtained
his Ph.D. in operations research and computer science from
North Carolina State University in 2002.

PAUL RUTH (pruth@renci.org) is a senior distributed systems
researcher at RENCI, University of North Carolina at Chapel
Hill. His research interests include machine and network
virtualization with emphasis on increasing the performance
of scientific applications. He received his Ph.D. in computer
science from Purdue University in 2007.

CHRIS HEERMAN (ckh@renci.org) is a senior network research
scientist at RENCI, University of North Carolina at Chapel
Hill, where he manages and operates a metro area dark
fiber based research facility. His primary focus is to enable
network research and develop software defined network-
ing solutions. Past experience includes network engineer-
ing, project management, and software development for
large service providers in both higher education and indus-
try. He holds an M.S. degree in electrical engineering from
George Mason University.

164

IEEE Communications Magazine * May 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

